{"title":"Effects of a Perimeter on the Post-failure Behavior of Fiber-reinforced Polymer Composite Lattices","authors":"Naruki Ichihara , Masahito Ueda , Akira Todoroki","doi":"10.1016/j.cjmeam.2023.100074","DOIUrl":null,"url":null,"abstract":"<div><p>The post-failure behavior of a fiber-reinforced polymer composite lattice was experimentally studied using a beam structure. Anisotropic topology optimization was conducted to maximize the structural stiffness and partial latticing to improve toughness. Subsequently, an infill structure was generated from the optimized results using a phase field approach. The perimeter of the two-dimensional beam structure was generated from a binary solution of the optimized results. Optimized composite lattice structures were obtained using three-dimensional printing. Three-point bending tests demonstrated that the perimeter enhanced the toughness of the composite lattice. The perimeter prevented shear band failure and improved the load-carrying capability, even after maximum loading.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"2 2","pages":"Article 100074"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772665723000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The post-failure behavior of a fiber-reinforced polymer composite lattice was experimentally studied using a beam structure. Anisotropic topology optimization was conducted to maximize the structural stiffness and partial latticing to improve toughness. Subsequently, an infill structure was generated from the optimized results using a phase field approach. The perimeter of the two-dimensional beam structure was generated from a binary solution of the optimized results. Optimized composite lattice structures were obtained using three-dimensional printing. Three-point bending tests demonstrated that the perimeter enhanced the toughness of the composite lattice. The perimeter prevented shear band failure and improved the load-carrying capability, even after maximum loading.