Zhenhu Wang , Yaohui Wang , Jian He , Ke Dong , Guoquan Zhang , Wenhao Li , Yi Xiong
{"title":"Additive Manufacturing of Continuous Fiber-Reinforced Polymer Composite Sandwich Structures with Multiscale Cellular Cores","authors":"Zhenhu Wang , Yaohui Wang , Jian He , Ke Dong , Guoquan Zhang , Wenhao Li , Yi Xiong","doi":"10.1016/j.cjmeam.2023.100088","DOIUrl":null,"url":null,"abstract":"<div><p>The use of composite sandwich structures with cellular cores is prevalent in lightweight designs owing to their superior energy-absorbing abilities. However, current manufacturing processes, such as hot-press molding and mold pressing, require multiple steps and complex tools, thus limiting the exploration of advanced sandwich structure designs. This study reports a novel multi-material additive manufacturing (AM) process that allows the single-step production of continuous fiber-reinforced polymer composite (CFRPC) sandwich structures with multiscale cellular cores. Specifically, the integration of CFRPC-AM and in situ foam AM processes provides effective and efficient fabrication of CFRPC panels and multiscale cellular cores with intricate designs. The cellular core design spans three levels: microcellular, unit-cell, and graded structures. Sandwich structures with a diverse set of unit-cell designs, that is, rhombus, square, honeycomb, and re-entrant honeycomb, were fabricated and their flexural behaviors were studied experimentally. The results showed that the sandwich structure with a rhombus core design possessed the highest flexural stiffness, strength, and specific energy absorption. In addition, the effect of the unit-cell assembly on the flexural performance of the CFRP composite sandwich structure was examined. The proposed design and fabrication methods open new avenues for constructing novel and high-performance CFRPC structures with multiscale cellular cores that cannot be obtained using existing approaches.</p></div>","PeriodicalId":100243,"journal":{"name":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","volume":"2 3","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772665723000272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The use of composite sandwich structures with cellular cores is prevalent in lightweight designs owing to their superior energy-absorbing abilities. However, current manufacturing processes, such as hot-press molding and mold pressing, require multiple steps and complex tools, thus limiting the exploration of advanced sandwich structure designs. This study reports a novel multi-material additive manufacturing (AM) process that allows the single-step production of continuous fiber-reinforced polymer composite (CFRPC) sandwich structures with multiscale cellular cores. Specifically, the integration of CFRPC-AM and in situ foam AM processes provides effective and efficient fabrication of CFRPC panels and multiscale cellular cores with intricate designs. The cellular core design spans three levels: microcellular, unit-cell, and graded structures. Sandwich structures with a diverse set of unit-cell designs, that is, rhombus, square, honeycomb, and re-entrant honeycomb, were fabricated and their flexural behaviors were studied experimentally. The results showed that the sandwich structure with a rhombus core design possessed the highest flexural stiffness, strength, and specific energy absorption. In addition, the effect of the unit-cell assembly on the flexural performance of the CFRP composite sandwich structure was examined. The proposed design and fabrication methods open new avenues for constructing novel and high-performance CFRPC structures with multiscale cellular cores that cannot be obtained using existing approaches.