Multiclass semantic segmentation mediated neuropathological readout in Parkinson's disease

Hosein Barzekar , Hai Ngu , Han Hui Lin , Mohsen Hejrati , Steven Ray Valdespino , Sarah Chu , Baris Bingol , Somaye Hashemifar , Soumitra Ghosh
{"title":"Multiclass semantic segmentation mediated neuropathological readout in Parkinson's disease","authors":"Hosein Barzekar ,&nbsp;Hai Ngu ,&nbsp;Han Hui Lin ,&nbsp;Mohsen Hejrati ,&nbsp;Steven Ray Valdespino ,&nbsp;Sarah Chu ,&nbsp;Baris Bingol ,&nbsp;Somaye Hashemifar ,&nbsp;Soumitra Ghosh","doi":"10.1016/j.neuri.2023.100131","DOIUrl":null,"url":null,"abstract":"<div><p>Automated segmentation of anatomical sub-regions with high precision has become a necessity to enable the quantification and characterization of cells/ tissues in histology images. An automated model to do this task is currently unavailable. One area of the brain which requires precise sub-region segmentation and downstream analysis is Substantia Nigra (SN). The loss of dopaminergic (DA) neurons in SN is the primary endpoint for majority of Parkinson's disease (PD) preclinical studies. The scientists rely on manually segmenting anatomical sub-regions of the brain which is extremely time-consuming and prone to labeler-dependent bias. In this study, we employed a UNet-based architecture to segment two sub-regions of SN-dorsal tier of substantia nigra pars compacta (SNCD) and reticulata (SNr). We compared model performance with various combinations of encoders, image sizes and sample selection techniques. The model is trained on approximately one thousand annotated 2D brain images stained with Nissl/ Haematoxylin and Tyrosine Hydroxylase enzyme (TH, indicator of dopaminergic neuron viability). The framework's output are: segmentation of SNr and SNCD irrespective of the tissue staining, quantitative readout for TH intensity indicating DA health status in the segmented regions. With the availability of training data, this model can be expanded to other 2D sub-region segmentation tasks. The shorter turnaround time, high accuracy and unbiased data output of this model will fulfill the ever increasing demands of data analysis in PD preclinical research.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"3 2","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277252862300016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automated segmentation of anatomical sub-regions with high precision has become a necessity to enable the quantification and characterization of cells/ tissues in histology images. An automated model to do this task is currently unavailable. One area of the brain which requires precise sub-region segmentation and downstream analysis is Substantia Nigra (SN). The loss of dopaminergic (DA) neurons in SN is the primary endpoint for majority of Parkinson's disease (PD) preclinical studies. The scientists rely on manually segmenting anatomical sub-regions of the brain which is extremely time-consuming and prone to labeler-dependent bias. In this study, we employed a UNet-based architecture to segment two sub-regions of SN-dorsal tier of substantia nigra pars compacta (SNCD) and reticulata (SNr). We compared model performance with various combinations of encoders, image sizes and sample selection techniques. The model is trained on approximately one thousand annotated 2D brain images stained with Nissl/ Haematoxylin and Tyrosine Hydroxylase enzyme (TH, indicator of dopaminergic neuron viability). The framework's output are: segmentation of SNr and SNCD irrespective of the tissue staining, quantitative readout for TH intensity indicating DA health status in the segmented regions. With the availability of training data, this model can be expanded to other 2D sub-region segmentation tasks. The shorter turnaround time, high accuracy and unbiased data output of this model will fulfill the ever increasing demands of data analysis in PD preclinical research.

多类语义分割介导的帕金森病神经病理读出
具有高精度的解剖子区域的自动分割已经成为实现组织学图像中细胞/组织的量化和表征的必要条件。执行此任务的自动化模型当前不可用。大脑中需要精确的子区域分割和下游分析的一个区域是黑质(SN)。SN中多巴胺能(DA)神经元的缺失是大多数帕金森病(PD)临床前研究的主要终点。科学家们依靠手动分割大脑的解剖亚区域,这非常耗时,而且容易产生标签依赖性偏差。在本研究中,我们采用了一种基于UNet的结构来分割黑质致密部(SNCD)和网状部(SNr)SN背层的两个子区域。我们将模型性能与编码器、图像大小和样本选择技术的各种组合进行了比较。该模型在大约1000张用Nissl/苏木精和酪氨酸羟化酶(TH,多巴胺能神经元活力的指标)染色的注释2D脑图像上进行训练。该框架的输出是:无论组织染色如何,SNr和SNCD的分割,TH强度的定量读数表明分割区域的DA健康状况。随着训练数据的可用性,该模型可以扩展到其他2D子区域分割任务。该模型更短的周转时间、高精度和无偏的数据输出将满足PD临床前研究中日益增长的数据分析需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信