{"title":"CSM-Potential2: A comprehensive deep learning platform for the analysis of protein interacting interfaces.","authors":"Carlos H M Rodrigues, David B Ascher","doi":"10.1002/prot.26615","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins are molecular machinery that participate in virtually all essential biological functions within the cell, which are tightly related to their 3D structure. The importance of understanding protein structure-function relationship is highlighted by the exponential growth of experimental structures, which has been greatly expanded by recent breakthroughs in protein structure prediction, most notably RosettaFold, and AlphaFold2. These advances have prompted the development of several computational approaches that leverage these data sources to explore potential biological interactions. However, most methods are generally limited to analysis of single types of interactions, such as protein-protein or protein-ligand interactions, and their complexity limits the usability to expert users. Here we report CSM-Potential2, a deep learning platform for the analysis of binding interfaces on protein structures. In addition to prediction of protein-protein interactions binding sites and classification of biological ligands, our new platform incorporates prediction of interactions with nucleic acids at the residue level and allows for ligand transplantation based on sequence and structure similarity to experimentally determined structures. We anticipate our platform to be a valuable resource that provides easy access to a range of state-of-the-art methods to expert and non-expert users for the study of biological interactions. Our tool is freely available as an easy-to-use web server and API available at https://biosig.lab.uq.edu.au/csm_potential.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"209-216"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26615","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteins are molecular machinery that participate in virtually all essential biological functions within the cell, which are tightly related to their 3D structure. The importance of understanding protein structure-function relationship is highlighted by the exponential growth of experimental structures, which has been greatly expanded by recent breakthroughs in protein structure prediction, most notably RosettaFold, and AlphaFold2. These advances have prompted the development of several computational approaches that leverage these data sources to explore potential biological interactions. However, most methods are generally limited to analysis of single types of interactions, such as protein-protein or protein-ligand interactions, and their complexity limits the usability to expert users. Here we report CSM-Potential2, a deep learning platform for the analysis of binding interfaces on protein structures. In addition to prediction of protein-protein interactions binding sites and classification of biological ligands, our new platform incorporates prediction of interactions with nucleic acids at the residue level and allows for ligand transplantation based on sequence and structure similarity to experimentally determined structures. We anticipate our platform to be a valuable resource that provides easy access to a range of state-of-the-art methods to expert and non-expert users for the study of biological interactions. Our tool is freely available as an easy-to-use web server and API available at https://biosig.lab.uq.edu.au/csm_potential.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.