Comparison of the Proteomes and Phosphoproteomes of S. cerevisiae Cells Harvested with Different Strategies.

IF 4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Valentina Rossio, Joao A Paulo
{"title":"Comparison of the Proteomes and Phosphoproteomes of <i>S. cerevisiae</i> Cells Harvested with Different Strategies.","authors":"Valentina Rossio,&nbsp;Joao A Paulo","doi":"10.3390/proteomes11040028","DOIUrl":null,"url":null,"abstract":"<p><p>The budding yeast <i>Saccharomyces cerevisiae</i> is a powerful model system that is widely used to investigate many cellular processes. The harvesting of yeast cells is the first step in almost every experimental procedure. Here, yeast cells are isolated from their growth medium, collected, and used for successive experiments or analysis. The two most common methods to harvest <i>S. cerevisiae</i> are centrifugation and filtration. Understanding if and how centrifugation and filtration affect yeast physiology is essential with respect to downstream data interpretation. Here, we profile and compare the proteomes and the phosphoproteomes, using isobaric label-based quantitative mass spectrometry, of three common methods used to harvest <i>S. cerevisiae</i> cells: low-speed centrifugation, high-speed centrifugation, and filtration. Our data suggest that, while the proteome was stable across the tested conditions, hundreds of phosphorylation events were different between centrifugation and filtration. Our analysis shows that, under our experimental conditions, filtration may cause both cell wall and osmotic stress at higher levels compared to centrifugation, implying harvesting-method-specific stresses. Thus, considering that the basal activation levels of specific stresses may differ under certain harvesting conditions is an important, but often overlooked, aspect of experimental design.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"11 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes11040028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The budding yeast Saccharomyces cerevisiae is a powerful model system that is widely used to investigate many cellular processes. The harvesting of yeast cells is the first step in almost every experimental procedure. Here, yeast cells are isolated from their growth medium, collected, and used for successive experiments or analysis. The two most common methods to harvest S. cerevisiae are centrifugation and filtration. Understanding if and how centrifugation and filtration affect yeast physiology is essential with respect to downstream data interpretation. Here, we profile and compare the proteomes and the phosphoproteomes, using isobaric label-based quantitative mass spectrometry, of three common methods used to harvest S. cerevisiae cells: low-speed centrifugation, high-speed centrifugation, and filtration. Our data suggest that, while the proteome was stable across the tested conditions, hundreds of phosphorylation events were different between centrifugation and filtration. Our analysis shows that, under our experimental conditions, filtration may cause both cell wall and osmotic stress at higher levels compared to centrifugation, implying harvesting-method-specific stresses. Thus, considering that the basal activation levels of specific stresses may differ under certain harvesting conditions is an important, but often overlooked, aspect of experimental design.

Abstract Image

Abstract Image

Abstract Image

不同策略收获酿酒酵母细胞的蛋白质组和磷酸蛋白质组的比较。
萌芽酵母酿酒酵母是一个强大的模型系统,广泛用于研究许多细胞过程。酵母细胞的收获是几乎所有实验程序的第一步。在这里,酵母细胞从其生长培养基中分离,收集,并用于连续的实验或分析。收获酿酒酵母最常见的两种方法是离心和过滤。了解离心和过滤是否以及如何影响酵母生理学对于下游数据解释至关重要。在这里,我们使用基于等压标记的定量质谱法,对用于收获酿酒酵母细胞的三种常见方法的蛋白质组和磷酸化蛋白质组进行了分析和比较:低速离心、高速离心和过滤。我们的数据表明,虽然蛋白质组在测试条件下是稳定的,但离心和过滤之间有数百个磷酸化事件不同。我们的分析表明,在我们的实验条件下,与离心相比,过滤可能会导致更高水平的细胞壁和渗透应力,这意味着收获方法特有的应力。因此,考虑到特定收获条件下特定应力的基本激活水平可能不同,这是实验设计的一个重要但经常被忽视的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proteomes
Proteomes Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍: Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信