Cortical Surface Parcellation using Spherical Convolutional Neural Networks.

Prasanna Parvathaneni, Shunxing Bao, Vishwesh Nath, Neil D Woodward, Daniel O Claassen, Carissa J Cascio, David H Zald, Yuankai Huo, Bennett A Landman, Ilwoo Lyu
{"title":"Cortical Surface Parcellation using Spherical Convolutional Neural Networks.","authors":"Prasanna Parvathaneni,&nbsp;Shunxing Bao,&nbsp;Vishwesh Nath,&nbsp;Neil D Woodward,&nbsp;Daniel O Claassen,&nbsp;Carissa J Cascio,&nbsp;David H Zald,&nbsp;Yuankai Huo,&nbsp;Bennett A Landman,&nbsp;Ilwoo Lyu","doi":"10.1007/978-3-030-32248-9_56","DOIUrl":null,"url":null,"abstract":"<p><p>We present cortical surface parcellation using spherical deep convolutional neural networks. Traditional multi-atlas cortical surface parcellation requires inter-subject surface registration using geometric features with slow processing speed on a single subject (2-3 hours). Moreover, even optimal surface registration does not necessarily produce optimal cortical parcellation as parcel boundaries are not fully matched to the geometric features. In this context, a choice of training features is important for accurate cortical parcellation. To utilize the networks efficiently, we propose cortical parcellation-specific input data from an irregular and complicated structure of cortical surfaces. To this end, we align ground-truth cortical parcel boundaries and use their resulting deformation fields to generate new pairs of deformed geometric features and parcellation maps. To extend the capability of the networks, we then smoothly morph cortical geometric features and parcellation maps using the intermediate deformation fields. We validate our method on 427 adult brains for 49 labels. The experimental results show that our method outperforms traditional multi-atlas and naive spherical U-Net approaches, while achieving full cortical parcellation in less than a minute.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6892466/pdf/nihms-1059107.pdf","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-32248-9_56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We present cortical surface parcellation using spherical deep convolutional neural networks. Traditional multi-atlas cortical surface parcellation requires inter-subject surface registration using geometric features with slow processing speed on a single subject (2-3 hours). Moreover, even optimal surface registration does not necessarily produce optimal cortical parcellation as parcel boundaries are not fully matched to the geometric features. In this context, a choice of training features is important for accurate cortical parcellation. To utilize the networks efficiently, we propose cortical parcellation-specific input data from an irregular and complicated structure of cortical surfaces. To this end, we align ground-truth cortical parcel boundaries and use their resulting deformation fields to generate new pairs of deformed geometric features and parcellation maps. To extend the capability of the networks, we then smoothly morph cortical geometric features and parcellation maps using the intermediate deformation fields. We validate our method on 427 adult brains for 49 labels. The experimental results show that our method outperforms traditional multi-atlas and naive spherical U-Net approaches, while achieving full cortical parcellation in less than a minute.

使用球面卷积神经网络进行皮层表面分割。
我们提出了使用球形深度卷积神经网络进行皮层表面分割。传统的多图谱皮层表面分割需要在单个受试者(2-3小时)上使用处理速度较慢的几何特征进行受试者间表面配准。此外,即使是最优的表面配准也不一定会产生最优的皮层分割,因为地块边界与几何特征并不完全匹配。在这种情况下,训练特征的选择对于准确的皮层分割很重要。为了有效利用网络,我们提出了来自不规则和复杂的皮层表面结构的皮层细分特定输入数据。为此,我们对齐地面实况皮层地块边界,并使用其产生的变形场来生成新的变形几何特征对和分割图。为了扩展网络的能力,我们使用中间变形场平滑地变形皮层几何特征和分割图。我们在427个成人大脑中对49个标签验证了我们的方法。实验结果表明,我们的方法优于传统的多图谱和朴素的球形U-Net方法,同时在不到一分钟的时间内实现了完整的皮层分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信