Christopher Syben, Markus Michen, Bernhard Stimpel, Stephan Seitz, Stefan Ploner, Andreas K Maier
{"title":"Technical Note: PYRO-NN: Python reconstruction operators in neural networks.","authors":"Christopher Syben, Markus Michen, Bernhard Stimpel, Stephan Seitz, Stefan Ploner, Andreas K Maier","doi":"10.1002/mp.13753","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Recently, several attempts were conducted to transfer deep learning to medical image reconstruction. An increasingly number of publications follow the concept of embedding the computed tomography (CT) reconstruction as a known operator into a neural network. However, most of the approaches presented lack an efficient CT reconstruction framework fully integrated into deep learning environments. As a result, many approaches use workarounds for mathematically unambiguously solvable problems.</p><p><strong>Methods: </strong>PYRO-NN is a generalized framework to embed known operators into the prevalent deep learning framework Tensorflow. The current status includes state-of-the-art parallel-, fan-, and cone-beam projectors, and back-projectors accelerated with CUDA provided as Tensorflow layers. On top, the framework provides a high-level Python API to conduct FBP and iterative reconstruction experiments with data from real CT systems.</p><p><strong>Results: </strong>The framework provides all necessary algorithms and tools to design end-to-end neural network pipelines with integrated CT reconstruction algorithms. The high-level Python API allows a simple use of the layers as known from Tensorflow. All algorithms and tools are referenced to a scientific publication and are compared to existing non-deep learning reconstruction frameworks. To demonstrate the capabilities of the layers, the framework comes with baseline experiments, which are described in the supplementary material. The framework is available as open-source software under the Apache 2.0 licence at https://github.com/csyben/PYRO-NN.</p><p><strong>Conclusions: </strong>PYRO-NN comes with the prevalent deep learning framework Tensorflow and allows to setup end-to-end trainable neural networks in the medical image reconstruction context. We believe that the framework will be a step toward reproducible research and give the medical physics community a toolkit to elevate medical image reconstruction with new deep learning techniques.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":"46 11","pages":"5110-5115"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mp.13753","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.13753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/8/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
Purpose: Recently, several attempts were conducted to transfer deep learning to medical image reconstruction. An increasingly number of publications follow the concept of embedding the computed tomography (CT) reconstruction as a known operator into a neural network. However, most of the approaches presented lack an efficient CT reconstruction framework fully integrated into deep learning environments. As a result, many approaches use workarounds for mathematically unambiguously solvable problems.
Methods: PYRO-NN is a generalized framework to embed known operators into the prevalent deep learning framework Tensorflow. The current status includes state-of-the-art parallel-, fan-, and cone-beam projectors, and back-projectors accelerated with CUDA provided as Tensorflow layers. On top, the framework provides a high-level Python API to conduct FBP and iterative reconstruction experiments with data from real CT systems.
Results: The framework provides all necessary algorithms and tools to design end-to-end neural network pipelines with integrated CT reconstruction algorithms. The high-level Python API allows a simple use of the layers as known from Tensorflow. All algorithms and tools are referenced to a scientific publication and are compared to existing non-deep learning reconstruction frameworks. To demonstrate the capabilities of the layers, the framework comes with baseline experiments, which are described in the supplementary material. The framework is available as open-source software under the Apache 2.0 licence at https://github.com/csyben/PYRO-NN.
Conclusions: PYRO-NN comes with the prevalent deep learning framework Tensorflow and allows to setup end-to-end trainable neural networks in the medical image reconstruction context. We believe that the framework will be a step toward reproducible research and give the medical physics community a toolkit to elevate medical image reconstruction with new deep learning techniques.