Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network.

Medical physics Pub Date : 2019-11-01 Epub Date: 2019-09-13 DOI:10.1002/mp.13793
Jordi Minnema, Maureen van Eijnatten, Allard A Hendriksen, Niels Liberton, Daniël M Pelt, Kees Joost Batenburg, Tymour Forouzanfar, Jan Wolff
{"title":"Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network.","authors":"Jordi Minnema,&nbsp;Maureen van Eijnatten,&nbsp;Allard A Hendriksen,&nbsp;Niels Liberton,&nbsp;Daniël M Pelt,&nbsp;Kees Joost Batenburg,&nbsp;Tymour Forouzanfar,&nbsp;Jan Wolff","doi":"10.1002/mp.13793","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In order to attain anatomical models, surgical guides and implants for computer-assisted surgery, accurate segmentation of bony structures in cone-beam computed tomography (CBCT) scans is required. However, this image segmentation step is often impeded by metal artifacts. Therefore, this study aimed to develop a mixed-scale dense convolutional neural network (MS-D network) for bone segmentation in CBCT scans affected by metal artifacts.</p><p><strong>Method: </strong>Training data were acquired from 20 dental CBCT scans affected by metal artifacts. An experienced medical engineer segmented the bony structures in all CBCT scans using global thresholding and manually removed all remaining noise and metal artifacts. The resulting gold standard segmentations were used to train an MS-D network comprising 100 convolutional layers using far fewer trainable parameters than alternative convolutional neural network (CNN) architectures. The bone segmentation performance of the MS-D network was evaluated using a leave-2-out scheme and compared with a clinical snake evolution algorithm and two state-of-the-art CNN architectures (U-Net and ResNet). All segmented CBCT scans were subsequently converted into standard tessellation language (STL) models and geometrically compared with the gold standard.</p><p><strong>Results: </strong>CBCT scans segmented using the MS-D network, U-Net, ResNet and the snake evolution algorithm demonstrated mean Dice similarity coefficients of 0.87 ± 0.06, 0.87 ± 0.07, 0.86 ± 0.05, and 0.78 ± 0.07, respectively. The STL models acquired using the MS-D network, U-Net, ResNet and the snake evolution algorithm demonstrated mean absolute deviations of 0.44 mm ± 0.13 mm, 0.43 mm ± 0.16 mm, 0.40 mm ± 0.12 mm and 0.57 mm ± 0.22 mm, respectively. In contrast to the MS-D network, the ResNet introduced wave-like artifacts in the STL models, whereas the U-Net incorrectly labeled background voxels as bone around the vertebrae in 4 of the 9 CBCT scans containing vertebrae.</p><p><strong>Conclusion: </strong>The MS-D network was able to accurately segment bony structures in CBCT scans affected by metal artifacts.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":"46 11","pages":"5027-5035"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mp.13793","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.13793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/9/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Purpose: In order to attain anatomical models, surgical guides and implants for computer-assisted surgery, accurate segmentation of bony structures in cone-beam computed tomography (CBCT) scans is required. However, this image segmentation step is often impeded by metal artifacts. Therefore, this study aimed to develop a mixed-scale dense convolutional neural network (MS-D network) for bone segmentation in CBCT scans affected by metal artifacts.

Method: Training data were acquired from 20 dental CBCT scans affected by metal artifacts. An experienced medical engineer segmented the bony structures in all CBCT scans using global thresholding and manually removed all remaining noise and metal artifacts. The resulting gold standard segmentations were used to train an MS-D network comprising 100 convolutional layers using far fewer trainable parameters than alternative convolutional neural network (CNN) architectures. The bone segmentation performance of the MS-D network was evaluated using a leave-2-out scheme and compared with a clinical snake evolution algorithm and two state-of-the-art CNN architectures (U-Net and ResNet). All segmented CBCT scans were subsequently converted into standard tessellation language (STL) models and geometrically compared with the gold standard.

Results: CBCT scans segmented using the MS-D network, U-Net, ResNet and the snake evolution algorithm demonstrated mean Dice similarity coefficients of 0.87 ± 0.06, 0.87 ± 0.07, 0.86 ± 0.05, and 0.78 ± 0.07, respectively. The STL models acquired using the MS-D network, U-Net, ResNet and the snake evolution algorithm demonstrated mean absolute deviations of 0.44 mm ± 0.13 mm, 0.43 mm ± 0.16 mm, 0.40 mm ± 0.12 mm and 0.57 mm ± 0.22 mm, respectively. In contrast to the MS-D network, the ResNet introduced wave-like artifacts in the STL models, whereas the U-Net incorrectly labeled background voxels as bone around the vertebrae in 4 of the 9 CBCT scans containing vertebrae.

Conclusion: The MS-D network was able to accurately segment bony structures in CBCT scans affected by metal artifacts.

Abstract Image

Abstract Image

Abstract Image

使用混合尺度密集卷积神经网络对受金属伪影影响的牙锥束CT扫描进行分割。
目的:为了获得计算机辅助手术的解剖模型、手术指南和植入物,需要在锥形束计算机断层扫描(CBCT)中准确分割骨结构。然而,该图像分割步骤经常受到金属伪影的阻碍。因此,本研究旨在开发一种混合尺度密集卷积神经网络(MS-D网络),用于受金属伪影影响的CBCT扫描中的骨骼分割。方法:从20例受金属伪影影响的牙科CBCT扫描中获取训练数据。一位经验丰富的医学工程师在所有CBCT扫描中使用全局阈值分割骨结构,并手动去除所有剩余的噪声和金属伪影。所得到的金标准分割用于使用比替代卷积神经网络(CNN)架构少得多的可训练参数来训练包括100个卷积层的MS-D网络。使用leave-2-out方案评估MS-D网络的骨骼分割性能,并与临床蛇进化算法和两种最先进的CNN架构(U-Net和ResNet)进行比较。随后将所有分割的CBCT扫描转换为标准镶嵌语言(STL)模型,并与黄金标准进行几何比较。结果:使用MS-D网络、U-Net、ResNet和snake进化算法分割的CBCT扫描显示平均Dice相似系数分别为0.87±0.06、0.87±0.07、0.86±0.05和0.78±0.07。使用MS-D网络、U-Net、ResNet和snake进化算法获得的STL模型的平均绝对偏差分别为0.44 mm±0.13 mm、0.43 mm±0.16 mm、0.40 mm±0.12 mm和0.57 mm±0.22 mm。与MS-D网络相比,ResNet在STL模型中引入了波浪状伪影,而U-Net在包含椎骨的9次CBCT扫描中的4次中错误地将背景体素标记为椎骨周围的骨骼。结论:MS-D网络能够准确地分割CBCT扫描中受金属伪影影响的骨结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信