IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease Prediction.

Anees Kazi, Soroush Farghadani, Iman Aganj, Nassir Navab
{"title":"IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease Prediction.","authors":"Anees Kazi,&nbsp;Soroush Farghadani,&nbsp;Iman Aganj,&nbsp;Nassir Navab","doi":"10.1007/978-3-031-45673-2_38","DOIUrl":null,"url":null,"abstract":"<p><p>Interpretability in Graph Convolutional Networks (GCNs) has been explored to some extent in general in computer vision; yet, in the medical domain, it requires further examination. Most of the interpretability approaches for GCNs, especially in the medical domain, focus on interpreting the output of the model in a <i>post</i>-<i>hoc</i> fashion. In this paper, we propose an interpretable attention module (IAM) that explains the relevance of the input features to the classification task on a GNN Model. The model uses these interpretations to improve its performance. In a clinical scenario, such a model can assist the clinical experts in better decision-making for diagnosis and treatment planning. The main novelty lies in the IAM, which directly operates on input features. IAM learns the attention for each feature based on the unique interpretability-specific losses. We show the application of our model on two publicly available datasets, Tadpole and the UK Biobank (UKBB). For Tadpole we choose the task of disease classification, and for UKBB, age, and sex prediction. The proposed model achieves an increase in an average accuracy of 3.2% for Tadpole and 1.6% for UKBB sex and 2% for the UKBB age prediction task compared to the state-of-the-art. Further, we show exhaustive validation and clinical interpretation of our results.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"14348 ","pages":"382-392"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583839/pdf/nihms-1932968.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-45673-2_38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Interpretability in Graph Convolutional Networks (GCNs) has been explored to some extent in general in computer vision; yet, in the medical domain, it requires further examination. Most of the interpretability approaches for GCNs, especially in the medical domain, focus on interpreting the output of the model in a post-hoc fashion. In this paper, we propose an interpretable attention module (IAM) that explains the relevance of the input features to the classification task on a GNN Model. The model uses these interpretations to improve its performance. In a clinical scenario, such a model can assist the clinical experts in better decision-making for diagnosis and treatment planning. The main novelty lies in the IAM, which directly operates on input features. IAM learns the attention for each feature based on the unique interpretability-specific losses. We show the application of our model on two publicly available datasets, Tadpole and the UK Biobank (UKBB). For Tadpole we choose the task of disease classification, and for UKBB, age, and sex prediction. The proposed model achieves an increase in an average accuracy of 3.2% for Tadpole and 1.6% for UKBB sex and 2% for the UKBB age prediction task compared to the state-of-the-art. Further, we show exhaustive validation and clinical interpretation of our results.

IACN:用于疾病预测的可解释的基于注意力的图卷积网络。
在计算机视觉中,图卷积网络(GCN)的可解释性已经得到了一定程度的探索;然而,在医学领域,它还需要进一步的检查。GCN的大多数可解释性方法,特别是在医学领域,都侧重于以事后的方式解释模型的输出。在本文中,我们提出了一个可解释注意力模块(IAM),用于解释GNN模型上输入特征与分类任务的相关性。该模型使用这些解释来提高其性能。在临床场景中,这样的模型可以帮助临床专家更好地进行诊断和治疗计划的决策。主要的新颖之处在于IAM,它直接对输入特性进行操作。IAM根据独特的可解释性特定损失来学习每个特征的注意力。我们在Tadpole和英国生物库(UKBB)这两个公开可用的数据集上展示了我们的模型的应用。对于蝌蚪,我们选择疾病分类的任务,对于UKBB,选择年龄和性别预测的任务。与现有技术相比,所提出的模型实现了蝌蚪3.2%、UKBB性别1.6%和UKBB年龄预测任务2%的平均准确率的提高。此外,我们对我们的结果进行了详尽的验证和临床解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信