PET imaging of retinal inflammation in mice exposed to blue light using [18F]-DPA-714.

IF 1.8 3区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Vision Pub Date : 2023-07-16 eCollection Date: 2023-01-01
Yuan Chen, Yixiang Zhou, Xue Zhu, Ge Yan, Donghui Pan, Lizhen Wang, Min Yang, Ke Wang
{"title":"PET imaging of retinal inflammation in mice exposed to blue light using [<sup>18</sup>F]-DPA-714.","authors":"Yuan Chen,&nbsp;Yixiang Zhou,&nbsp;Xue Zhu,&nbsp;Ge Yan,&nbsp;Donghui Pan,&nbsp;Lizhen Wang,&nbsp;Min Yang,&nbsp;Ke Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Positron emission tomography (PET) is widely used in high-precision imaging, which may provide a simple and noninvasive method for the detection of pathology and therapeutic effects. [<sup>18</sup>F]-DPA-714 is a second-generation translocator protein (TSPO) positron emission tomography radiotracer that shows great promise in a model of neuroinflammation. In this study, [<sup>18</sup>F]-DPA-714 micro-PET imaging was used to evaluate retinal inflammation in mice exposed to blue light, a well-established model of age-related macular degeneration (AMD) for molecular mechanism research and drug screening.</p><p><strong>Methods: </strong>C57BL/6J melanized mice were subjected to 10,000, 15,000, and 20,000 lux blue light for 5 days (8 h/day) to develop the retinal injury model, and the structure and function of the retina were assessed using hematoxylin-eosin (HE) staining, electroretinography (ERG), and terminal-deoxynucleotidyl transferase (TdT)-mediated nick-end labeling (TUNEL) immunostaining. Then, [<sup>18</sup>F]-DPA-714 was injected approximately 100 μCi through each tail vein, and static imaging was performed 1 h after injection. Finally, the mice eyeballs were collected for biodistribution and immune analysis.</p><p><strong>Results: </strong>The blue light exposure significantly destroyed the structure and function of the retina, and the uptake of [<sup>18</sup>F]-DPA-714 in the retinas of the mice exposed to blue light were the most significantly upregulated, which was consistent with the biodistribution data. In addition, the immunohistochemical, western blot, and immunofluorescence data showed an increase in microglial TSPO expression.</p><p><strong>Conclusions: </strong>[<sup>18</sup>F]-DPA-714 micro-PET imaging might be a good method for evaluating early inflammatory status during retinal pathology.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"29 ","pages":"117-124"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/24/mv-v29-117.PMC10584029.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Positron emission tomography (PET) is widely used in high-precision imaging, which may provide a simple and noninvasive method for the detection of pathology and therapeutic effects. [18F]-DPA-714 is a second-generation translocator protein (TSPO) positron emission tomography radiotracer that shows great promise in a model of neuroinflammation. In this study, [18F]-DPA-714 micro-PET imaging was used to evaluate retinal inflammation in mice exposed to blue light, a well-established model of age-related macular degeneration (AMD) for molecular mechanism research and drug screening.

Methods: C57BL/6J melanized mice were subjected to 10,000, 15,000, and 20,000 lux blue light for 5 days (8 h/day) to develop the retinal injury model, and the structure and function of the retina were assessed using hematoxylin-eosin (HE) staining, electroretinography (ERG), and terminal-deoxynucleotidyl transferase (TdT)-mediated nick-end labeling (TUNEL) immunostaining. Then, [18F]-DPA-714 was injected approximately 100 μCi through each tail vein, and static imaging was performed 1 h after injection. Finally, the mice eyeballs were collected for biodistribution and immune analysis.

Results: The blue light exposure significantly destroyed the structure and function of the retina, and the uptake of [18F]-DPA-714 in the retinas of the mice exposed to blue light were the most significantly upregulated, which was consistent with the biodistribution data. In addition, the immunohistochemical, western blot, and immunofluorescence data showed an increase in microglial TSPO expression.

Conclusions: [18F]-DPA-714 micro-PET imaging might be a good method for evaluating early inflammatory status during retinal pathology.

Abstract Image

Abstract Image

Abstract Image

使用[18F]-DPA-714对暴露于蓝光的小鼠视网膜炎症进行PET成像。
目的:正电子发射断层扫描(PET)广泛应用于高精度成像,为检测病理和治疗效果提供了一种简单、无创的方法。[18F]-DPA-714是一种第二代转运蛋白(TSPO)正电子发射断层扫描放射性示踪剂,在神经炎症模型中显示出巨大的前景。在本研究中,[18F]-DPA-714显微PET成像用于评估暴露于蓝光的小鼠的视网膜炎症,蓝光是一种公认的年龄相关性黄斑变性(AMD)模型,用于分子机制研究和药物筛选。方法:将C57BL/6J黑化小鼠置于10000、15000和20000lux蓝光下5天(8小时/天)建立视网膜损伤模型,并使用苏木精-伊红(HE)染色、视网膜电图(ERG)和末端脱氧核苷酸转移酶(TdT)介导的缺口末端标记(TUNEL)免疫染色评估视网膜的结构和功能。然后,通过每个尾静脉注射[18F]-DPA-714约100μCi,并在注射后1小时进行静态成像。最后,收集小鼠眼球进行生物分布和免疫分析。结果:蓝光照射显著破坏了视网膜的结构和功能,蓝光照射小鼠视网膜对[18F]-DPA-714的摄取上调最为显著,这与生物分布数据一致。此外,免疫组织化学、蛋白质印迹和免疫荧光数据显示小胶质细胞TSPO表达增加。结论:[18F]-DPA-714显微PET成像可能是评估视网膜病理早期炎症状态的良好方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Vision
Molecular Vision 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
25
审稿时长
1 months
期刊介绍: Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical). Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints. For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信