Rapid Separation of Asiatic Acid, Quercetin, and Kaempferol from Traditional Chinese Medicine Centella asiatica (L.) Urban Using HSCCC-Semi-Prep-HPLC and the Assessment of Their Potential as Fatty Acid Synthase Inhibitors.
{"title":"Rapid Separation of Asiatic Acid, Quercetin, and Kaempferol from Traditional Chinese Medicine <i>Centella asiatica</i> (L.) Urban Using HSCCC-Semi-Prep-HPLC and the Assessment of Their Potential as Fatty Acid Synthase Inhibitors.","authors":"Binbin Xia, Yali Li, Yang Liu, Wenfang Sun, Jing Chen, Liushui Li, Jingyao Pang, Xianjun Liu, Shicai Chen, Hua Cheng","doi":"10.1155/2023/7769368","DOIUrl":null,"url":null,"abstract":"<p><p>The main objective of this study was to rapidly separate asiatic acid (AA), quercetin (QCN), and kaempferol (KPL) from <i>Centella asiatica</i> (L.) Urban using high-speed counter-current chromatography (HSCCC) in tandem with the UV detector of semipreparative high-performance liquid chromatography (Semi-Prep-HPLC) and to evaluate their potential as inhibitors of fatty acid synthetase (FAS). To efficiently prepare large amounts of AA, QCN, and KPL from <i>Centella asiatica</i> (L.) Urban, rapid and simple methods by HSCCC were established respectively based on the partition coefficients (<i>K</i> values) of crude samples. The conditions of HSCCC-Semi-Prep-HPLC for the large-scale separation of AA, QCN, and KPL from <i>Centella asiatica</i> (L.) Urban were established and optimized. This included selecting the solvent system, flow rate, rotation speed, and so on. HSCCC-Semi-Prep-HPLC was successfully applied to separate and purify AA, QCN, and KPL, with <i>n</i>-hexane-<i>n</i>-butanol-methanol-water (3 : 1 : 3 : 3, V : V : V : V) as the solvent system for AA, which was detected at a wavelength of 210 nm with the stationary phase retention of 70%, and with <i>n</i>-hexane-ethyl acetate-methanol-water (0.8 : 0.9 : 1.2 : 1, V : V : V : V) as the solvent system for the co-separation of QCN and KPL, which was detected at a wavelength of 254 nm with the stationary phase retention of 65%. AA could be isolated at a large scale with high purity (>91.0%) in only one-step HSCCC-Semi-Prep-HPLC separation (within 150 min) under the optimized conditions. Meanwhile, QCN and KPL could be simultaneously isolated at a large scale with high purity (>99.1%) by another one-step HSCCC-Semi-Prep-HPLC separation (within 240 min) under the optimized conditions. The assessment of inhibition potential revealed that AA exhibited the strongest inhibitory effect on FAS, with an IC<sub>50</sub> of 9.52 ± 0.76 <i>μ</i>g/mL. Madecassic acid (MA) followed closely with IC<sub>50</sub> values of 10.84 ± 0.92 <i>μ</i>g/mL. QCN and KPL showed similar and relatively weaker inhibitory effects on FAS, with IC<sub>50</sub> values of 43.09 ± 2.98 <i>μ</i>g/mL and 36.90 ± 1.83 <i>μ</i>g/mL, respectively. Overall, the HSCCC-Semi-Prep-HPLC method proved to be a highly efficient and reliable technique for separating AA, QCN, and KPL from <i>Centella asiatica</i> (L.) Urban, and the isolated compounds showed potential as FAS inhibitors.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581841/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/7769368","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The main objective of this study was to rapidly separate asiatic acid (AA), quercetin (QCN), and kaempferol (KPL) from Centella asiatica (L.) Urban using high-speed counter-current chromatography (HSCCC) in tandem with the UV detector of semipreparative high-performance liquid chromatography (Semi-Prep-HPLC) and to evaluate their potential as inhibitors of fatty acid synthetase (FAS). To efficiently prepare large amounts of AA, QCN, and KPL from Centella asiatica (L.) Urban, rapid and simple methods by HSCCC were established respectively based on the partition coefficients (K values) of crude samples. The conditions of HSCCC-Semi-Prep-HPLC for the large-scale separation of AA, QCN, and KPL from Centella asiatica (L.) Urban were established and optimized. This included selecting the solvent system, flow rate, rotation speed, and so on. HSCCC-Semi-Prep-HPLC was successfully applied to separate and purify AA, QCN, and KPL, with n-hexane-n-butanol-methanol-water (3 : 1 : 3 : 3, V : V : V : V) as the solvent system for AA, which was detected at a wavelength of 210 nm with the stationary phase retention of 70%, and with n-hexane-ethyl acetate-methanol-water (0.8 : 0.9 : 1.2 : 1, V : V : V : V) as the solvent system for the co-separation of QCN and KPL, which was detected at a wavelength of 254 nm with the stationary phase retention of 65%. AA could be isolated at a large scale with high purity (>91.0%) in only one-step HSCCC-Semi-Prep-HPLC separation (within 150 min) under the optimized conditions. Meanwhile, QCN and KPL could be simultaneously isolated at a large scale with high purity (>99.1%) by another one-step HSCCC-Semi-Prep-HPLC separation (within 240 min) under the optimized conditions. The assessment of inhibition potential revealed that AA exhibited the strongest inhibitory effect on FAS, with an IC50 of 9.52 ± 0.76 μg/mL. Madecassic acid (MA) followed closely with IC50 values of 10.84 ± 0.92 μg/mL. QCN and KPL showed similar and relatively weaker inhibitory effects on FAS, with IC50 values of 43.09 ± 2.98 μg/mL and 36.90 ± 1.83 μg/mL, respectively. Overall, the HSCCC-Semi-Prep-HPLC method proved to be a highly efficient and reliable technique for separating AA, QCN, and KPL from Centella asiatica (L.) Urban, and the isolated compounds showed potential as FAS inhibitors.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.