Tom V. Smulders, Laura J. Douglas, Daniel Reza, Lucinda H. Male, Alexander Prysce, Amélie Alix, Alexander de Guzman Dodd, Jenny C. A. Read
{"title":"Hoarding titmice predominantly use Familiarity, and not Recollection, when remembering cache locations","authors":"Tom V. Smulders, Laura J. Douglas, Daniel Reza, Lucinda H. Male, Alexander Prysce, Amélie Alix, Alexander de Guzman Dodd, Jenny C. A. Read","doi":"10.1007/s10071-023-01829-3","DOIUrl":null,"url":null,"abstract":"<div><p>Scatter-hoarding birds find their caches using spatial memory and have an enlarged hippocampus. Finding a cache site could be achieved using either Recollection (a discrete recalling of previously experienced information) or Familiarity (a feeling of “having encountered something before”). In humans, these two processes can be distinguished using receiver operating characteristic (ROC) curves. ROC curves for olfactory memory in rats have shown the hippocampus is involved in Recollection, but not Familiarity. We test the hypothesis that food-hoarding birds, having a larger hippocampus, primarily use Recollection to find their caches. We validate a novel method of constructing ROC curves in humans and apply this method to cache retrieval by coal tits (<i>Periparus ater</i>). Both humans and birds mainly use Familiarity in finding their caches, with lower contribution of Recollection. This contribution is not significantly different from chance in birds, but a small contribution cannot be ruled out. Memory performance decreases with increasing retention interval in birds. The ecology of food-hoarding Parids makes it plausible that they mainly use Familiarity in the memory for caches. The larger hippocampus could be related to associating cache contents and temporal context with cache locations, rather than Recollection of the spatial information itself.</p></div>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":"26 6","pages":"1929 - 1943"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769918/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cognition","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10071-023-01829-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Scatter-hoarding birds find their caches using spatial memory and have an enlarged hippocampus. Finding a cache site could be achieved using either Recollection (a discrete recalling of previously experienced information) or Familiarity (a feeling of “having encountered something before”). In humans, these two processes can be distinguished using receiver operating characteristic (ROC) curves. ROC curves for olfactory memory in rats have shown the hippocampus is involved in Recollection, but not Familiarity. We test the hypothesis that food-hoarding birds, having a larger hippocampus, primarily use Recollection to find their caches. We validate a novel method of constructing ROC curves in humans and apply this method to cache retrieval by coal tits (Periparus ater). Both humans and birds mainly use Familiarity in finding their caches, with lower contribution of Recollection. This contribution is not significantly different from chance in birds, but a small contribution cannot be ruled out. Memory performance decreases with increasing retention interval in birds. The ecology of food-hoarding Parids makes it plausible that they mainly use Familiarity in the memory for caches. The larger hippocampus could be related to associating cache contents and temporal context with cache locations, rather than Recollection of the spatial information itself.
期刊介绍:
Animal Cognition is an interdisciplinary journal offering current research from many disciplines (ethology, behavioral ecology, animal behavior and learning, cognitive sciences, comparative psychology and evolutionary psychology) on all aspects of animal (and human) cognition in an evolutionary framework.
Animal Cognition publishes original empirical and theoretical work, reviews, methods papers, short communications and correspondence on the mechanisms and evolution of biologically rooted cognitive-intellectual structures.
The journal explores animal time perception and use; causality detection; innate reaction patterns and innate bases of learning; numerical competence and frequency expectancies; symbol use; communication; problem solving, animal thinking and use of tools, and the modularity of the mind.