A Hybrid Approach Combining Data-Driven and Signal-Processing-Based Methods for Fault Diagnosis of a Hydraulic Rock Drill

IF 1.4 Q2 ENGINEERING, MULTIDISCIPLINARY
Hye Jun Oh, Jinoh Yoo, Sangkyung Lee, Minseok Chae, Jongmin Park, B. Youn
{"title":"A Hybrid Approach Combining Data-Driven and Signal-Processing-Based Methods for Fault Diagnosis of a Hydraulic Rock Drill","authors":"Hye Jun Oh, Jinoh Yoo, Sangkyung Lee, Minseok Chae, Jongmin Park, B. Youn","doi":"10.36001/ijphm.2023.v14i1.3458","DOIUrl":null,"url":null,"abstract":"This study presents a novel method for fault diagnosis of a hydrostatic rock drill. Hydraulic rock drills suffer from both domain discrepancy issues that arise due to their harsh working environment and indivisible difference. As a result, fault diagnosis is very challenging. To overcome these problems, we propose a novel diagnosis method that combines both data-driven and signal-process-based methods. In the proposed approach, data-driven methods are employed for overall fault classification, using domain adaptation, metric learning, and pseudo-label-based deep learning methods. Next, a signal-process-based method is used to diagnose the specific fault by generating a reference signal. Using the combined approach, the fault-diagnosis performance was 100%; the proposed method was able to perform well even in cases with domain discrepancy.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i1.3458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel method for fault diagnosis of a hydrostatic rock drill. Hydraulic rock drills suffer from both domain discrepancy issues that arise due to their harsh working environment and indivisible difference. As a result, fault diagnosis is very challenging. To overcome these problems, we propose a novel diagnosis method that combines both data-driven and signal-process-based methods. In the proposed approach, data-driven methods are employed for overall fault classification, using domain adaptation, metric learning, and pseudo-label-based deep learning methods. Next, a signal-process-based method is used to diagnose the specific fault by generating a reference signal. Using the combined approach, the fault-diagnosis performance was 100%; the proposed method was able to perform well even in cases with domain discrepancy.
基于数据驱动和信号处理相结合的液压凿岩机故障诊断方法
本文提出了一种新的静压凿岩机故障诊断方法。液压凿岩机由于其恶劣的工作环境和不可分割的差异而存在领域差异问题。因此,故障诊断非常具有挑战性。为了克服这些问题,我们提出了一种新的诊断方法,该方法结合了数据驱动和基于信号处理的方法。在所提出的方法中,使用领域自适应、度量学习和基于伪标签的深度学习方法,将数据驱动的方法用于整体故障分类。接下来,使用基于信号处理的方法通过生成参考信号来诊断特定故障。使用组合方法,故障诊断性能为100%;即使在存在领域差异的情况下,所提出的方法也能很好地执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.50%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信