Defining Causality in Covid-19 and Google Search Trends in Java, Indonesia Cases: A Retrospective Analysis

Q2 Mathematics
Afrina Andriani Sebayang, Enrico Antonius, Elisabeth Victoria Pravitama, Jonathan Irianto, Shannen Widijanto, M. Syamsuddin
{"title":"Defining Causality in Covid-19 and Google Search Trends in Java, Indonesia Cases: A Retrospective Analysis","authors":"Afrina Andriani Sebayang, Enrico Antonius, Elisabeth Victoria Pravitama, Jonathan Irianto, Shannen Widijanto, M. Syamsuddin","doi":"10.5614/cbms.2021.4.2.1","DOIUrl":null,"url":null,"abstract":"The Coronavirus disease 2019 (Covid-19) has led all countries around the world to the unpredicted situation. It is such a crucial to investigate novel approaches in predicting the future behaviour of the outbreak. In this paper, Google trend analysis will be employed to analyse the seek pattern of Covid-19 cases. The first method to investigate the seek information behaviour related to Covid-19 outbreak is using lag-correlation between two time series data per regional data. The second method is used to encounter the cause-effect relation between time series data. We apply statistical methods for causal inference in epidemics. Our focus is on predicting the causal-effect relationship between information-seeking patterns and Google search in the Covid-19 pandemic. We propose the using of Granger Causality method to analyse the causal relation between incidence data and Google Trend Data.","PeriodicalId":33129,"journal":{"name":"Communication in Biomathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication in Biomathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/cbms.2021.4.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The Coronavirus disease 2019 (Covid-19) has led all countries around the world to the unpredicted situation. It is such a crucial to investigate novel approaches in predicting the future behaviour of the outbreak. In this paper, Google trend analysis will be employed to analyse the seek pattern of Covid-19 cases. The first method to investigate the seek information behaviour related to Covid-19 outbreak is using lag-correlation between two time series data per regional data. The second method is used to encounter the cause-effect relation between time series data. We apply statistical methods for causal inference in epidemics. Our focus is on predicting the causal-effect relationship between information-seeking patterns and Google search in the Covid-19 pandemic. We propose the using of Granger Causality method to analyse the causal relation between incidence data and Google Trend Data.
新冠肺炎因果关系的定义和印度尼西亚爪哇病例的谷歌搜索趋势:回顾性分析
2019冠状病毒病(新冠肺炎)已导致世界各国陷入前所未有的局面。研究预测疫情未来行为的新方法至关重要。在本文中,谷歌趋势分析将用于分析新冠肺炎病例的寻找模式。调查与新冠肺炎疫情相关的寻求信息行为的第一种方法是使用每个区域数据的两个时间序列数据之间的滞后相关性。第二种方法用于处理时间序列数据之间的因果关系。我们将统计学方法应用于流行病的因果推断。我们的重点是预测新冠肺炎大流行中信息寻求模式与谷歌搜索之间的因果关系。我们建议使用Granger因果关系方法来分析发病率数据和谷歌趋势数据之间的因果关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communication in Biomathematical Sciences
Communication in Biomathematical Sciences Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信