Stationary density function for a random evolution driven by a Markov-switching Ornstein–Uhlenbeck process with finite velocity

IF 0.3 Q4 STATISTICS & PROBABILITY
A. Pogorui, R. Rodríguez-Dagnino
{"title":"Stationary density function for a random evolution driven by a Markov-switching Ornstein–Uhlenbeck process with finite velocity","authors":"A. Pogorui, R. Rodríguez-Dagnino","doi":"10.1515/rose-2022-2075","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider a new telegraph process of Ornstein–Uhlenbeck type. The process is obtained by generalizing the telegraph process in a similar manner to how the Ornstein–Uhlenbeck process was obtained from the Wiener process, namely by adding a drift coefficient proportional to a displacement from the origin. This process was first introduced by Ratanov in [N. Ratanov, Ornstein–Uhlenbeck process of bounded variation, Methodol. Comput. Appl. Probab. 23 2021, 925–946]. We obtain the infinitesimal operator of this process and we present formulas for finding its stationary probability density. We consider both the symmetric and asymmetric cases.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"30 1","pages":"113 - 120"},"PeriodicalIF":0.3000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper, we consider a new telegraph process of Ornstein–Uhlenbeck type. The process is obtained by generalizing the telegraph process in a similar manner to how the Ornstein–Uhlenbeck process was obtained from the Wiener process, namely by adding a drift coefficient proportional to a displacement from the origin. This process was first introduced by Ratanov in [N. Ratanov, Ornstein–Uhlenbeck process of bounded variation, Methodol. Comput. Appl. Probab. 23 2021, 925–946]. We obtain the infinitesimal operator of this process and we present formulas for finding its stationary probability density. We consider both the symmetric and asymmetric cases.
有限速度Markov切换Ornstein–Uhlenbeck过程驱动的随机进化的平稳密度函数
摘要在本文中,我们考虑了一种新的Ornstein–Uhlenbeck类型的电报过程。该过程是通过将电报过程以类似于从维纳过程中获得奥恩斯坦-乌伦贝克过程的方式进行推广而获得的,即通过添加与原点位移成比例的漂移系数。Ratanov在[N.Ratanov,Ornstein–Uhlenbeck有界变异过程,Methodol.Comput.Appl.Probab.232021,925–946]中首次引入了这一过程。我们得到了这个过程的无穷小算子,并给出了求其平稳概率密度的公式。我们同时考虑对称和非对称情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信