Sreehari Rajan‐Kattil, M. Sutton, S. Sockalingam, F. Thomas, T. Weerasooriya, S. Alexander
{"title":"Direct material property determination: One‐dimensional formulation utilising full‐field deformation measurements","authors":"Sreehari Rajan‐Kattil, M. Sutton, S. Sockalingam, F. Thomas, T. Weerasooriya, S. Alexander","doi":"10.1111/str.12427","DOIUrl":null,"url":null,"abstract":"A direct approach is described to determine the elastic modulus distribution in a nominally heterogeneous material subject to tensile/compression loading and primarily experiencing deformations in the axial direction. The formulation is developed for uniaxial applications using basic theoretical constructs, resulting in a computational framework that has a matrix form [A] {E} = {R}, where the [A] matrix components are known functions of measured axial strains and axial positions, {R} components are known functions of axial body forces, applied loads and reactions and {E} components are the unknown elastic moduli at discrete locations along the length of the specimen. For a series of one‐dimensional (1D) material property identification procedure with known axial strains at discrete locations and various levels of random noise, results are presented to demonstrate the accuracy and noise sensitivity of the methodology. Finally, experimental measurements for a heterogeneous bone specimen are compared to our 1D model predictions, demonstrating that the predictions are in very good agreement with independent estimates at each load level of interest along the length of the bone specimen.","PeriodicalId":51176,"journal":{"name":"Strain","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strain","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/str.12427","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1
Abstract
A direct approach is described to determine the elastic modulus distribution in a nominally heterogeneous material subject to tensile/compression loading and primarily experiencing deformations in the axial direction. The formulation is developed for uniaxial applications using basic theoretical constructs, resulting in a computational framework that has a matrix form [A] {E} = {R}, where the [A] matrix components are known functions of measured axial strains and axial positions, {R} components are known functions of axial body forces, applied loads and reactions and {E} components are the unknown elastic moduli at discrete locations along the length of the specimen. For a series of one‐dimensional (1D) material property identification procedure with known axial strains at discrete locations and various levels of random noise, results are presented to demonstrate the accuracy and noise sensitivity of the methodology. Finally, experimental measurements for a heterogeneous bone specimen are compared to our 1D model predictions, demonstrating that the predictions are in very good agreement with independent estimates at each load level of interest along the length of the bone specimen.
期刊介绍:
Strain is an international journal that contains contributions from leading-edge research on the measurement of the mechanical behaviour of structures and systems. Strain only accepts contributions with sufficient novelty in the design, implementation, and/or validation of experimental methodologies to characterize materials, structures, and systems; i.e. contributions that are limited to the application of established methodologies are outside of the scope of the journal. The journal includes papers from all engineering disciplines that deal with material behaviour and degradation under load, structural design and measurement techniques. Although the thrust of the journal is experimental, numerical simulations and validation are included in the coverage.
Strain welcomes papers that deal with novel work in the following areas:
experimental techniques
non-destructive evaluation techniques
numerical analysis, simulation and validation
residual stress measurement techniques
design of composite structures and components
impact behaviour of materials and structures
signal and image processing
transducer and sensor design
structural health monitoring
biomechanics
extreme environment
micro- and nano-scale testing method.