Looking for a New Approach to Measuring the Spatial Concentration of the Human Population

IF 0.5 4区 数学 Q4 SOCIAL SCIENCES, MATHEMATICAL METHODS
Federico Benassi, Massimo Mucciardi, Giovanni Pirrotta
{"title":"Looking for a New Approach to Measuring the Spatial Concentration of the Human Population","authors":"Federico Benassi, Massimo Mucciardi, Giovanni Pirrotta","doi":"10.2478/jos-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract In the article a new approach for measuring the spatial concentration of human population is presented and tested. The new procedure is based on the concept of concentration introduced by Gini and, at the same time, on its spatial extension (i.e., taking into account the concept of spatial autocorrelation, polarization). The proposed indicator, the Spatial Gini Index, is then computed by using two different kind of territorial partitioning methods: MaxMin (MM) and the Constant Step (CS) distance. In this framework an ad hoc extension of the Rey and Smith decomposition method is then introduced. We apply this new approach to the Italian and foreign population resident in almost 7,900 statistical units (Italian municipalities) in 2002, 2010 and 2018. All elaborations are based on a new ad hoc library developed and implemented in Python.","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"39 1","pages":"285 - 324"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2023-0014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In the article a new approach for measuring the spatial concentration of human population is presented and tested. The new procedure is based on the concept of concentration introduced by Gini and, at the same time, on its spatial extension (i.e., taking into account the concept of spatial autocorrelation, polarization). The proposed indicator, the Spatial Gini Index, is then computed by using two different kind of territorial partitioning methods: MaxMin (MM) and the Constant Step (CS) distance. In this framework an ad hoc extension of the Rey and Smith decomposition method is then introduced. We apply this new approach to the Italian and foreign population resident in almost 7,900 statistical units (Italian municipalities) in 2002, 2010 and 2018. All elaborations are based on a new ad hoc library developed and implemented in Python.
寻找一种测量人口空间集中度的新方法
摘要本文提出并测试了一种测量人口空间集中度的新方法。新程序基于基尼提出的浓度概念,同时基于其空间扩展(即,考虑到空间自相关、极化的概念)。然后,通过使用两种不同的区域划分方法:MaxMin(MM)和恒定步长(CS)距离来计算所提出的指标,即空间基尼指数。在此框架中,引入了Rey和Smith分解方法的一个特殊扩展。我们将这一新方法应用于2002年、2010年和2018年居住在近7900个统计单位(意大利城市)的意大利和外国人口。所有的阐述都是基于一个用Python开发和实现的新的特设库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Official Statistics
Journal of Official Statistics STATISTICS & PROBABILITY-
CiteScore
1.90
自引率
9.10%
发文量
39
审稿时长
>12 weeks
期刊介绍: JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信