Fuzzy fractional-order PID control for two-wheeled self-balancing robots on inclined road surface

IF 3.2 Q2 AUTOMATION & CONTROL SYSTEMS
Jiawen Zhang, Tao Zhao, Bin Guo, S. Dian
{"title":"Fuzzy fractional-order PID control for two-wheeled self-balancing robots on inclined road surface","authors":"Jiawen Zhang, Tao Zhao, Bin Guo, S. Dian","doi":"10.1080/21642583.2021.2001768","DOIUrl":null,"url":null,"abstract":"Two-wheeled self-balancing robots (TWSBR) is a highly nonlinear and inherently unstable under-driving system. When controlling its movement on an inclined surface, it is more difficult than when it is on a level road. This paper proposes a fuzzy fractional-order PID (FFOPID) controller for the motion control of a TWSBR system in an inclined environment. The control goal of TWSBR is to realize the wheel position control and to stabilize the non-vertical direction of intermediate body (IB). Finally, we compare the control effect of the proposed FFOPID controller with that of the integer-order PID controller, the fuzzy PID (FPID) controller, and the fractional-order PID (FOPID) controller when TWSBR moving on the inclined plane. The simulation results show that the FFOPID controller has better control performance and anti-interference ability.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":"10 1","pages":"289 - 299"},"PeriodicalIF":3.2000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2021.2001768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Two-wheeled self-balancing robots (TWSBR) is a highly nonlinear and inherently unstable under-driving system. When controlling its movement on an inclined surface, it is more difficult than when it is on a level road. This paper proposes a fuzzy fractional-order PID (FFOPID) controller for the motion control of a TWSBR system in an inclined environment. The control goal of TWSBR is to realize the wheel position control and to stabilize the non-vertical direction of intermediate body (IB). Finally, we compare the control effect of the proposed FFOPID controller with that of the integer-order PID controller, the fuzzy PID (FPID) controller, and the fractional-order PID (FOPID) controller when TWSBR moving on the inclined plane. The simulation results show that the FFOPID controller has better control performance and anti-interference ability.
倾斜路面上两轮自平衡机器人的模糊分数阶PID控制
两轮自平衡机器人(TWSBR)是一个高度非线性且固有不稳定的欠驱动系统。当在倾斜表面上控制其运动时,它比在水平道路上更困难。针对倾斜环境下TWSBR系统的运动控制,提出了一种模糊分数阶PID控制器。TWSBR的控制目标是实现车轮位置控制,并稳定中间体(IB)的非垂直方向。最后,我们将所提出的FFOPID控制器与整数阶PID控制器、模糊PID控制器和分数阶PID控制器在TWSBR在斜面上运动时的控制效果进行了比较。仿真结果表明,FFOPID控制器具有较好的控制性能和抗干扰能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Systems Science & Control Engineering
Systems Science & Control Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
9.50
自引率
2.40%
发文量
70
审稿时长
29 weeks
期刊介绍: Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信