Y. Benkrima, A. Souigat, M. E. Soudani, Z. Korichi, H. Bouguettaia
{"title":"First principles study structural and magnetic properties of Mn doped MgO","authors":"Y. Benkrima, A. Souigat, M. E. Soudani, Z. Korichi, H. Bouguettaia","doi":"10.15251/jor.2022.185.681","DOIUrl":null,"url":null,"abstract":"The structure, electronic and magnetic properties of the MgO bulk of (1x2x2) and (1x1x1) atoms for the B4 wurtzite phase, doped by Manganese Mn have been studied. Accordingly, the Mn atom location in the far and near spots was taken into account, as well as recognizing the magnetic interaction between both spots. Such initiative was provided thanks to the use of the density function theorem (DFT). As for the energy gap of the semiconductor MgO, it was calculated by the linearly increasing planar method, and by the local density approximation (LDA), not to mention the generalized gradient approximation (CGA).It is found that the calculated results agree well with other theoretical and experimental findings. Whereas, the energy gap and the total magnetic torque have been recorded for the Mn doped MgO in the (1x2x2) super Celle. Therefore, our given results have shown that the use of the classification-generalized approximation could enable us to provide more precise results of the d orbital composites, and they also added new properties to the new compound.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2022.185.681","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The structure, electronic and magnetic properties of the MgO bulk of (1x2x2) and (1x1x1) atoms for the B4 wurtzite phase, doped by Manganese Mn have been studied. Accordingly, the Mn atom location in the far and near spots was taken into account, as well as recognizing the magnetic interaction between both spots. Such initiative was provided thanks to the use of the density function theorem (DFT). As for the energy gap of the semiconductor MgO, it was calculated by the linearly increasing planar method, and by the local density approximation (LDA), not to mention the generalized gradient approximation (CGA).It is found that the calculated results agree well with other theoretical and experimental findings. Whereas, the energy gap and the total magnetic torque have been recorded for the Mn doped MgO in the (1x2x2) super Celle. Therefore, our given results have shown that the use of the classification-generalized approximation could enable us to provide more precise results of the d orbital composites, and they also added new properties to the new compound.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.