A new proof of Stanley’s theorem on the strong Lefschetz property

Pub Date : 2022-11-24 DOI:10.4064/cm8987-11-2022
Hong Phuong, Quang Hoa Tran
{"title":"A new proof of Stanley’s theorem on the strong Lefschetz property","authors":"Hong Phuong, Quang Hoa Tran","doi":"10.4064/cm8987-11-2022","DOIUrl":null,"url":null,"abstract":". A standard graded artinian monomial complete intersection algebra A = k [ x 1 , x 2 , . . . , x n ] / ( x a 1 1 , x a 2 2 , . . . , x a n n ), with k a field of characteristic zero, has the strong Lefschetz property due to Stanley in 1980. In this paper, we give a new proof for this result by using only the basic properties of linear algebra. Furthermore, our proof is still true in the case where the characteristic of k is greater than the socle degree of A , namely a 1 + a 2 + · · · + a n − n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/cm8987-11-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

. A standard graded artinian monomial complete intersection algebra A = k [ x 1 , x 2 , . . . , x n ] / ( x a 1 1 , x a 2 2 , . . . , x a n n ), with k a field of characteristic zero, has the strong Lefschetz property due to Stanley in 1980. In this paper, we give a new proof for this result by using only the basic properties of linear algebra. Furthermore, our proof is still true in the case where the characteristic of k is greater than the socle degree of A , namely a 1 + a 2 + · · · + a n − n .
分享
查看原文
关于强Lefschetz性质的Stanley定理的一个新证明
.由于Stanley在1980年提出的一个标准分次artinian单体完全交代数A=k[x1,x2,…,xn]/(x1,x2 2,…,xan n),其特征域为零,具有强Lefschetz性质。本文仅利用线性代数的基本性质,对这一结果给出了一个新的证明。此外,我们的证明在k的特征大于A的阶的情况下仍然成立,即A 1+A 2+···+A n−n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信