Automated garden-insect recognition using improved lightweight convolution network

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY
Zhankui Yang , Xinting Yang , Ming Li , Wenyong Li
{"title":"Automated garden-insect recognition using improved lightweight convolution network","authors":"Zhankui Yang ,&nbsp;Xinting Yang ,&nbsp;Ming Li ,&nbsp;Wenyong Li","doi":"10.1016/j.inpa.2021.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>Automated recognition of insect category, which currently is performed mainly by agriculture experts, is a challenging problem that has received increasing attention in recent years. The goal of the present research is to develop an intelligent mobile-terminal recognition system based on deep neural networks to recognize garden insects in a device that can be conveniently deployed in mobile terminals. State-of-the-art lightweight convolutional neural networks (such as SqueezeNet and ShuffleNet) have the same accuracy as classical convolutional neural networks such as AlexNet but fewer parameters, thereby not only requiring communication across servers during distributed training but also being more feasible to deploy on mobile terminals and other hardware with limited memory. In this research, we connect with the rich details of the low-level network features and the rich semantic information of the high-level network features to construct more rich semantic information feature maps which can effectively improve SqueezeNet model with a small computational cost. In addition, we developed an off-line insect recognition software that can be deployed on the mobile terminal to solve no network and the time-delay problems in the field. Experiments demonstrate that the proposed method is promising for recognition while remaining within a limited computational budget and delivers a much higher recognition accuracy of 91.64% with less training time relative to other classical convolutional neural networks. We have also verified the results that the improved SqueezeNet model has a 2.3% higher than of the original model in the open insect data IP102.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 2","pages":"Pages 256-266"},"PeriodicalIF":7.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Automated recognition of insect category, which currently is performed mainly by agriculture experts, is a challenging problem that has received increasing attention in recent years. The goal of the present research is to develop an intelligent mobile-terminal recognition system based on deep neural networks to recognize garden insects in a device that can be conveniently deployed in mobile terminals. State-of-the-art lightweight convolutional neural networks (such as SqueezeNet and ShuffleNet) have the same accuracy as classical convolutional neural networks such as AlexNet but fewer parameters, thereby not only requiring communication across servers during distributed training but also being more feasible to deploy on mobile terminals and other hardware with limited memory. In this research, we connect with the rich details of the low-level network features and the rich semantic information of the high-level network features to construct more rich semantic information feature maps which can effectively improve SqueezeNet model with a small computational cost. In addition, we developed an off-line insect recognition software that can be deployed on the mobile terminal to solve no network and the time-delay problems in the field. Experiments demonstrate that the proposed method is promising for recognition while remaining within a limited computational budget and delivers a much higher recognition accuracy of 91.64% with less training time relative to other classical convolutional neural networks. We have also verified the results that the improved SqueezeNet model has a 2.3% higher than of the original model in the open insect data IP102.

利用改进的轻量级卷积网络实现花园昆虫的自动识别
昆虫类别的自动识别是近年来备受关注的一个具有挑战性的问题,目前主要由农业专家来完成。本研究的目标是开发一种基于深度神经网络的智能移动终端识别系统,以识别可方便部署在移动终端上的设备中的花园昆虫。最先进的轻量级卷积神经网络(如SqueezeNet和ShuffleNet)具有与经典卷积神经网络(如AlexNet)相同的精度,但参数更少,因此在分布式训练时不仅需要跨服务器通信,而且在移动终端和其他内存有限的硬件上部署更可行。在本研究中,我们将底层网络特征的丰富细节和高层网络特征的丰富语义信息结合起来,构建了更丰富的语义信息特征映射,以较小的计算成本有效地改进了SqueezeNet模型。此外,我们开发了一种离线昆虫识别软件,可以部署在移动端,解决了现场无网络和时延问题。实验表明,在有限的计算预算下,该方法具有良好的识别前景,与其他经典卷积神经网络相比,其训练时间更短,识别准确率高达91.64%。我们还在开放昆虫数据IP102中验证了改进的SqueezeNet模型比原始模型高2.3%的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信