Eco-efficient alkaline activated binders for manufacturing blocks and pedestrian pavers with low carbon footprint: Mechanical properties and LCA assessment
J. Mejía-Arcila, W. Valencia-Saavedra, R. Mejía de Gutiérrez
{"title":"Eco-efficient alkaline activated binders for manufacturing blocks and pedestrian pavers with low carbon footprint: Mechanical properties and LCA assessment","authors":"J. Mejía-Arcila, W. Valencia-Saavedra, R. Mejía de Gutiérrez","doi":"10.3989/mc.2020.17419","DOIUrl":null,"url":null,"abstract":"This study proposes using two types of binders based on fly ash (FA) as primary raw material and a calcium source such as ground granulated blast furnace slag (GBFS) or Portland cement (OPC) for the production of eco-efficient pre-fabricated materials. These binders are denoted FA/GBFS (70/30) and FA/OPC (80/20). A mix of commercial sodium silicate and sodium hydroxide was used as a traditional activator (SN), and the mix of rice husk ash (RHA) and NaOH as an alternative activator (RN). The results show the possibility of obtaining a binary cement (FA/GBFS-RN) with compressive strength up to 38 MPa after curing for 28 days and 65 MPa after curing for 360 days. The hybrid binder (FA/OPC-RN) reported 30 MPa and 61 MPa at the same age of curing. Additionally, FA/GBFS-RN reports reductions in the environmental and health impacts of up to 75% compared to systems made with sodium silicate and sodium hydroxide. Based on the results, FA/ GBFS-RN paste was selected as the optimal material for producing masonry blocks and pedestrian pavers, which met the Colombian standards.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3989/mc.2020.17419","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
This study proposes using two types of binders based on fly ash (FA) as primary raw material and a calcium source such as ground granulated blast furnace slag (GBFS) or Portland cement (OPC) for the production of eco-efficient pre-fabricated materials. These binders are denoted FA/GBFS (70/30) and FA/OPC (80/20). A mix of commercial sodium silicate and sodium hydroxide was used as a traditional activator (SN), and the mix of rice husk ash (RHA) and NaOH as an alternative activator (RN). The results show the possibility of obtaining a binary cement (FA/GBFS-RN) with compressive strength up to 38 MPa after curing for 28 days and 65 MPa after curing for 360 days. The hybrid binder (FA/OPC-RN) reported 30 MPa and 61 MPa at the same age of curing. Additionally, FA/GBFS-RN reports reductions in the environmental and health impacts of up to 75% compared to systems made with sodium silicate and sodium hydroxide. Based on the results, FA/ GBFS-RN paste was selected as the optimal material for producing masonry blocks and pedestrian pavers, which met the Colombian standards.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.