Stable centres of wreath products

Q3 Mathematics
Christopher Ryba
{"title":"Stable centres of wreath products","authors":"Christopher Ryba","doi":"10.5802/alco.264","DOIUrl":null,"url":null,"abstract":"A result of Farahat and Higman shows that there is a ``universal'' algebra, $\\mathrm{FH}$, interpolating the centres of symmetric group algebras, $Z(\\mathbb{Z}S_n)$. We explain that this algebra is isomorphic to $\\mathcal{R} \\otimes \\Lambda$, where $\\mathcal{R}$ is the ring of integer-valued polynomials and $\\Lambda$ is the ring of symmetric functions. Moreover, the isomorphism is via ``evaluation at Jucys-Murphy elements'', which leads to character formulae for symmetric groups. Then, we generalise this result to wreath products $\\Gamma \\wr S_n$ of a fixed finite group $\\Gamma$. This involves constructing wreath-product versions $\\mathcal{R}_\\Gamma$ and $\\Lambda(\\Gamma_*)$ of $\\mathcal{R}$ and $\\Lambda$, respectively, which are interesting in their own right (for example, both are Hopf algebras). We show that the universal algebra for wreath products, $\\mathrm{FH}_\\Gamma$, is isomorphic to $\\mathcal{R}_\\Gamma \\otimes \\Lambda(\\Gamma_*)$ and use this to compute the $p$-blocks of wreath products.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

A result of Farahat and Higman shows that there is a ``universal'' algebra, $\mathrm{FH}$, interpolating the centres of symmetric group algebras, $Z(\mathbb{Z}S_n)$. We explain that this algebra is isomorphic to $\mathcal{R} \otimes \Lambda$, where $\mathcal{R}$ is the ring of integer-valued polynomials and $\Lambda$ is the ring of symmetric functions. Moreover, the isomorphism is via ``evaluation at Jucys-Murphy elements'', which leads to character formulae for symmetric groups. Then, we generalise this result to wreath products $\Gamma \wr S_n$ of a fixed finite group $\Gamma$. This involves constructing wreath-product versions $\mathcal{R}_\Gamma$ and $\Lambda(\Gamma_*)$ of $\mathcal{R}$ and $\Lambda$, respectively, which are interesting in their own right (for example, both are Hopf algebras). We show that the universal algebra for wreath products, $\mathrm{FH}_\Gamma$, is isomorphic to $\mathcal{R}_\Gamma \otimes \Lambda(\Gamma_*)$ and use this to compute the $p$-blocks of wreath products.
花环产品的稳定中心
Farahat和Higman的一个结果表明,存在一个“泛”代数$\mathrm{FH}$,对对称群代数$Z(\mathbb{Z}S_n)$。我们解释了这个代数同构于$\mathcal{R}\otimes\Lambda$,其中$\mathical{R}$是整数值多项式的环,$\Lambda$是对称函数的环。此外,同构是通过“在Jucys-Murphy元素上的评估”,这导致了对称群的特征公式。然后,我们将这个结果推广到固定有限群$\Gamma$的环积$\Gamma\wr S_n$。这涉及到构建花圈产品版本$\mathcal{R}_\分别为$\mathcal{R}$和$\Lambda$的Gamma$和$\Lambda(\Gamma_*)$,它们本身就很有趣(例如,两者都是Hopf代数)。我们证明了环积的泛代数$\mathrm{FH}_\Gamma$,同构于$\mathcal{R}_\Gamma\otimes\Lambda(\Gamma_*)$,并使用它来计算花圈积的$p$块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebraic Combinatorics
Algebraic Combinatorics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
45
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信