{"title":"Some Reflections on Rosenbaum and Rubin’s Propensity Score Paper","authors":"R. Little","doi":"10.1353/obs.2023.0006","DOIUrl":null,"url":null,"abstract":"Abstract:Rosenbaum and Rubin’s paper is highly cited because the basic idea is simple and insightful, and it has applications to important practical problems in treatment comparisons with observational data, and selection bias and nonresponse in surveys. I discuss several issues related to the method, including use of the propensity score for weighting or prediction, and two robust methods that use the propensity score as a covariate and can be more efficient that weighting when the weights are highly variable, namely Penalized Spline of Propensity Prediction (PSPP) and Penalized Spline of Propensity for Treatment Comparisons (PENCOMP). Approaches to addressing highly variable weights are discussed, including omitting variables in the propensity model that are unrelated to outcomes, and redefining the estimand.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":"9 1","pages":"69 - 75"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2023.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract:Rosenbaum and Rubin’s paper is highly cited because the basic idea is simple and insightful, and it has applications to important practical problems in treatment comparisons with observational data, and selection bias and nonresponse in surveys. I discuss several issues related to the method, including use of the propensity score for weighting or prediction, and two robust methods that use the propensity score as a covariate and can be more efficient that weighting when the weights are highly variable, namely Penalized Spline of Propensity Prediction (PSPP) and Penalized Spline of Propensity for Treatment Comparisons (PENCOMP). Approaches to addressing highly variable weights are discussed, including omitting variables in the propensity model that are unrelated to outcomes, and redefining the estimand.