Cluster theory of the coherent Satake category

IF 3.5 1区 数学 Q1 MATHEMATICS
Sabin Cautis, H. Williams
{"title":"Cluster theory of the coherent Satake category","authors":"Sabin Cautis, H. Williams","doi":"10.1090/JAMS/918","DOIUrl":null,"url":null,"abstract":"<p>We study the category of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G left-parenthesis script upper O right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">G(\\mathcal {O})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariant perverse coherent sheaves on the affine Grassmannian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper G normal r Subscript upper G\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">G</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n </mml:mrow>\n <mml:mi>G</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {Gr}_G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This coherent Satake category is not semisimple and its convolution product is not symmetric, in contrast with the usual constructible Satake category. Instead, we use the Beilinson-Drinfeld Grassmannian to construct renormalized <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\n <mml:semantics>\n <mml:mi>r</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-matrices. These are canonical nonzero maps between convolution products which satisfy axioms weaker than those of a braiding.</p>\n\n<p>We also show that the coherent Satake category is rigid, and that together these results strongly constrain its convolution structure. In particular, they can be used to deduce the existence of (categorified) cluster structures. We study the case <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G equals upper G upper L Subscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>G</mml:mi>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">G = GL_n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in detail and prove that the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper G Subscript m\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">G</mml:mi>\n </mml:mrow>\n <mml:mi>m</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {G}_m</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-equivariant coherent Satake category of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L Subscript n\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>G</mml:mi>\n <mml:msub>\n <mml:mi>L</mml:mi>\n <mml:mi>n</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">GL_n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a monoidal categorification of an explicit quantum cluster algebra.</p>\n\n<p>More generally, we construct renormalized <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r\">\n <mml:semantics>\n <mml:mi>r</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">r</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-matrices in any monoidal category whose product is compatible with an auxiliary chiral category, and explain how the appearance of cluster algebras in 4d <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper N equals 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">N</mml:mi>\n </mml:mrow>\n <mml:mo>=</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {N}=2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> field theory may be understood from this point of view.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAMS/918","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/918","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 37

Abstract

We study the category of G ( O ) G(\mathcal {O}) -equivariant perverse coherent sheaves on the affine Grassmannian G r G \mathrm {Gr}_G . This coherent Satake category is not semisimple and its convolution product is not symmetric, in contrast with the usual constructible Satake category. Instead, we use the Beilinson-Drinfeld Grassmannian to construct renormalized r r -matrices. These are canonical nonzero maps between convolution products which satisfy axioms weaker than those of a braiding.

We also show that the coherent Satake category is rigid, and that together these results strongly constrain its convolution structure. In particular, they can be used to deduce the existence of (categorified) cluster structures. We study the case G = G L n G = GL_n in detail and prove that the G m \mathbb {G}_m -equivariant coherent Satake category of G L n GL_n is a monoidal categorification of an explicit quantum cluster algebra.

More generally, we construct renormalized r r -matrices in any monoidal category whose product is compatible with an auxiliary chiral category, and explain how the appearance of cluster algebras in 4d N = 2 \mathcal {N}=2 field theory may be understood from this point of view.

相干Satake范畴的簇理论
我们研究了仿射Grassmannian G r G\mathrm上G(O)G(\mathcal{O})-等变反常相干簇的范畴{Gr}_G。这个相干Satake范畴不是半单的,它的卷积积也不是对称的,与通常的可构造Satake类别相反。相反,我们使用Beilinson-Drinfeld-Grassmannian来构造重整化r-矩阵。这些是卷积乘积之间的正则非零映射,其满足比编织的公理弱的公理。我们还证明了相干Satake范畴是刚性的,这些结果加在一起强烈约束了它的卷积结构。特别地,它们可以用来推断(已分类的)簇结构的存在。我们详细研究了G=GLnG=GL_n的情形,并证明了Gm\mathbb{G}_mGL_n的等变相干Satake范畴是显式量子簇代数的一个单oid范畴。更一般地说,我们在乘积与辅助手性范畴相容的任何单oid范畴中构造了重正化r-矩阵,并从这个角度解释了如何理解簇代数在4d N=2\mathemical{N}=2场论中的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信