Important Issues on Spectral Properties of a Transmission Eigenvalue Problem

IF 1.4 Q2 MATHEMATICS, APPLIED
B. Cobani, A. Simoni, L. Subashi
{"title":"Important Issues on Spectral Properties of a Transmission Eigenvalue Problem","authors":"B. Cobani, A. Simoni, L. Subashi","doi":"10.1155/2021/5795940","DOIUrl":null,"url":null,"abstract":"Nowadays, inverse scattering is an important field of interest for many mathematicians who deal with partial differential equations theory, and the research in inverse scattering is in continuous progress. There are many problems related to scattering by an inhomogeneous media. Here, we study the transmission eigenvalue problem corresponding to a new scattering problem, where boundary conditions differ from any other interior problem studied previously. more specifically, instead of prescribing the difference Cauchy data on the boundary which is the classical form of the problem, we consider the case when the difference of the trace of the fields is proportional to the normal derivative of the field. Typical concerns related to TEP (transmission eigenvalue problem) are Fredholm property and solvability, the discreteness of the transmission eigenvalues, and their existence. In this article, we provide answers for all these concerns in a given interior transmission problem for an inhomogeneous media. We use the variational method and a very important theorem on the existence of transmission eigenvalues to arrive at the conclusion of the existence of the transmission eigenvalues.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5795940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, inverse scattering is an important field of interest for many mathematicians who deal with partial differential equations theory, and the research in inverse scattering is in continuous progress. There are many problems related to scattering by an inhomogeneous media. Here, we study the transmission eigenvalue problem corresponding to a new scattering problem, where boundary conditions differ from any other interior problem studied previously. more specifically, instead of prescribing the difference Cauchy data on the boundary which is the classical form of the problem, we consider the case when the difference of the trace of the fields is proportional to the normal derivative of the field. Typical concerns related to TEP (transmission eigenvalue problem) are Fredholm property and solvability, the discreteness of the transmission eigenvalues, and their existence. In this article, we provide answers for all these concerns in a given interior transmission problem for an inhomogeneous media. We use the variational method and a very important theorem on the existence of transmission eigenvalues to arrive at the conclusion of the existence of the transmission eigenvalues.
传输特征值问题谱性质的重要问题
逆散射是当今许多处理偏微分方程理论的数学家感兴趣的一个重要领域,逆散射的研究也在不断发展。存在许多与非均匀介质散射有关的问题。在这里,我们研究了与一个新的散射问题相对应的传输特征值问题,其中边界条件不同于之前研究的任何其他内部问题。更具体地说,我们考虑的不是边界上的差分Cauchy数据(这是问题的经典形式),而是场的迹的差与场的法向导数成比例的情况。与TEP(传输特征值问题)相关的典型问题是Fredholm性质和可解性、传输特征值的离散性及其存在性。在本文中,我们为非均匀介质的给定内部传输问题中的所有这些问题提供了答案。我们利用变分方法和一个关于传输特征值存在性的重要定理,得出了传输特征值的存在性的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信