Vector bundles and modular forms for Fuchsian groups of genus zero

IF 1.2 3区 数学 Q1 MATHEMATICS
L. Candelori, C. Franc
{"title":"Vector bundles and modular forms for Fuchsian groups of genus zero","authors":"L. Candelori, C. Franc","doi":"10.4310/cntp.2019.v13.n3.a1","DOIUrl":null,"url":null,"abstract":"This article lays the foundations for the study of modular forms transforming with respect to representations of Fuchsian groups of genus zero. More precisely, we define geometrically weighted graded modules of such modular forms, where the graded structure comes from twisting with all isomorphism classes of line bundles on the corresponding compactified modular curve, and we study their structure by relating it to the structure of vector bundles over orbifold curves of genus zero. We prove that these modules are free whenever the Fuchsian group has at most two elliptic points. For three or more elliptic points, we give explicit constructions of indecomposable vector bundles of rank two over modular orbifold curves, which give rise to non-free modules of geometrically weighted modular forms.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2019.v13.n3.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

This article lays the foundations for the study of modular forms transforming with respect to representations of Fuchsian groups of genus zero. More precisely, we define geometrically weighted graded modules of such modular forms, where the graded structure comes from twisting with all isomorphism classes of line bundles on the corresponding compactified modular curve, and we study their structure by relating it to the structure of vector bundles over orbifold curves of genus zero. We prove that these modules are free whenever the Fuchsian group has at most two elliptic points. For three or more elliptic points, we give explicit constructions of indecomposable vector bundles of rank two over modular orbifold curves, which give rise to non-free modules of geometrically weighted modular forms.
零亏格Fuchsian群的向量丛和模形式
本文为研究关于零亏格Fuchsian群表示的模形式变换奠定了基础。更准确地说,我们定义了这种模形式的几何加权分次模,其中分次结构来自于与对应的紧致模曲线上的所有同构类的线束的扭曲,并且我们通过将其与亏格为零的orbifold曲线上的向量束的结构相关联来研究它们的结构。我们证明了当Fuchsian群至多有两个椭圆点时,这些模是自由的。对于三个或三个以上的椭圆点,我们给出了模orbifold曲线上秩为2的不可分解向量丛的显式构造,它产生了几何加权模形式的非自由模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信