Interpolation without commutants

IF 0.7 4区 数学 Q2 MATHEMATICS
O. Szehr, R. Zarouf
{"title":"Interpolation without commutants","authors":"O. Szehr, R. Zarouf","doi":"10.7900/jot.2019may21.2264","DOIUrl":null,"url":null,"abstract":"We introduce a ``dual-space approach'' to mixed Nevanlinna--Pick Carath\\'eodory-Schur interpolation in Banach spaces X of holomorphic functions on the disk. Our approach can be viewed as complementary to the well-known commutant lifting one of D. Sarason and B. Nagy-C. Foia\\c{s}. We compute the norm of the minimal interpolant in X by a version of the Hahn-Banach theorem, which we use to extend functionals defined on a subspace of kernels without increasing their norm. This functional extension lemma plays a similar role as Sarason's commutant lifting theorem but it only involves the predual of X and no Hilbert space structure is needed. As an example, we present the respective Pick-type interpolation theorems for Beurling-Sobolev spaces.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019may21.2264","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a ``dual-space approach'' to mixed Nevanlinna--Pick Carath\'eodory-Schur interpolation in Banach spaces X of holomorphic functions on the disk. Our approach can be viewed as complementary to the well-known commutant lifting one of D. Sarason and B. Nagy-C. Foia\c{s}. We compute the norm of the minimal interpolant in X by a version of the Hahn-Banach theorem, which we use to extend functionals defined on a subspace of kernels without increasing their norm. This functional extension lemma plays a similar role as Sarason's commutant lifting theorem but it only involves the predual of X and no Hilbert space structure is needed. As an example, we present the respective Pick-type interpolation theorems for Beurling-Sobolev spaces.
无换向器的插值
我们在Banach空间X中引入了一种“对偶空间方法”来求解圆盘上全纯函数的混合Nevanlinna-Pick-Carath’odory-Schur插值。我们的方法可以被看作是对D.Sarason和B.Nagy-C著名的交换质提升方法的补充。Foia。我们通过Hahn-Banach定理的一个版本来计算X中最小插值的范数,我们使用该定理来扩展在核的子空间上定义的泛函,而不增加它们的范数。这个函数可拓引理与Sarason的交换提升定理具有相似的作用,但它只涉及X的前对偶,不需要Hilbert空间结构。作为一个例子,我们分别给出了Beurling-Sobolev空间的Pick型插值定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信