Definition of the Hercynian Unconformity in eastern Saudi Arabia using chemostratigraphy in conjunction with biostratigraphy, sedimentology and lithostratigraphy
{"title":"Definition of the Hercynian Unconformity in eastern Saudi Arabia using chemostratigraphy in conjunction with biostratigraphy, sedimentology and lithostratigraphy","authors":"N. Craigie","doi":"10.1144/petgeo2019-116","DOIUrl":null,"url":null,"abstract":"The following chemostratigraphy study was conducted on Paleozoic sediments encountered in 14 wells in eastern Saudi Arabia. A total of 1500 samples were analysed by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), with data acquired for 48 elements, ranging from Na to U in the periodic table. The aim was to utilize chemostratigraphy, in conjunction with existing biostratigraphic, lithostratigraphic and sedimentological data, to define the Hercynian Unconformity in each well and to recognize stratigraphic boundaries occurring above and below it. This was necessary as the unconformity eroded to different stratigraphic levels in each well, with Devonian, Silurian and Ordovician sediments found immediately below it in adjacent locations. In the absence of chemostratigraphic, biostratigraphic and sedimentological data, it is often very difficult to define this boundary and others using lithostratigraphy alone as many stratigraphic intervals yield similar gamma-ray (GR) log trends. For example, a low ‘blocky’ GR response is typical of both the Carboniferous Ghazal Member and the Ordovician Sarah Formation. Similarly, both the Silurian Sharawra Member and the Silurian–Devonian Tawil Formation produce a ‘ratty’ GR trend. Each stratigraphic member and formation was found to have distinctive chemostratigraphic, biostratigraphic, sedimentological and/or wireline log signatures.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":"26 1","pages":"568 - 588"},"PeriodicalIF":2.1000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2019-116","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The following chemostratigraphy study was conducted on Paleozoic sediments encountered in 14 wells in eastern Saudi Arabia. A total of 1500 samples were analysed by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), with data acquired for 48 elements, ranging from Na to U in the periodic table. The aim was to utilize chemostratigraphy, in conjunction with existing biostratigraphic, lithostratigraphic and sedimentological data, to define the Hercynian Unconformity in each well and to recognize stratigraphic boundaries occurring above and below it. This was necessary as the unconformity eroded to different stratigraphic levels in each well, with Devonian, Silurian and Ordovician sediments found immediately below it in adjacent locations. In the absence of chemostratigraphic, biostratigraphic and sedimentological data, it is often very difficult to define this boundary and others using lithostratigraphy alone as many stratigraphic intervals yield similar gamma-ray (GR) log trends. For example, a low ‘blocky’ GR response is typical of both the Carboniferous Ghazal Member and the Ordovician Sarah Formation. Similarly, both the Silurian Sharawra Member and the Silurian–Devonian Tawil Formation produce a ‘ratty’ GR trend. Each stratigraphic member and formation was found to have distinctive chemostratigraphic, biostratigraphic, sedimentological and/or wireline log signatures.
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.