Variable speed symmetric random walk driven by the simple symmetric exclusion process

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
O. Menezes, Jonathon Peterson, Yong-Xiao Xie
{"title":"Variable speed symmetric random walk driven by the simple symmetric exclusion process","authors":"O. Menezes, Jonathon Peterson, Yong-Xiao Xie","doi":"10.1214/21-ejp735","DOIUrl":null,"url":null,"abstract":"We prove a quenched functional central limit theorem for a one-dimensional random walk driven by a simple symmetric exclusion process. This model can be viewed as a special case of the random walk in a balanced random environment, for which the weak quenched limit is constructed as a function of the invariant measure of the environment viewed from the walk. We bypass the need to show the existence of this invariant measure. Instead, we find the limit of the quadratic variation of the walk and give an explicit formula for it.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ejp735","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a quenched functional central limit theorem for a one-dimensional random walk driven by a simple symmetric exclusion process. This model can be viewed as a special case of the random walk in a balanced random environment, for which the weak quenched limit is constructed as a function of the invariant measure of the environment viewed from the walk. We bypass the need to show the existence of this invariant measure. Instead, we find the limit of the quadratic variation of the walk and give an explicit formula for it.
简单对称排斥过程驱动的变速对称随机游动
我们证明了由简单对称排斥过程驱动的一维随机游动的一个淬灭函数中心极限定理。该模型可以被视为平衡随机环境中随机游动的一个特例,其中弱猝灭极限被构造为从游动角度观察环境的不变测度的函数。我们不需要证明这个不变测度的存在性。相反,我们找到了行走的二次变化的极限,并给出了它的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信