Linh T. Duong, Brenda Kroschel, Michael Riddell, K. V. Vander Meulen, Adam Van Tuyl
{"title":"Maximum nullity and zero forcing of circulant graphs","authors":"Linh T. Duong, Brenda Kroschel, Michael Riddell, K. V. Vander Meulen, Adam Van Tuyl","doi":"10.1515/spma-2020-0106","DOIUrl":null,"url":null,"abstract":"Abstract The zero forcing number of a graph has been applied to communication complexity, electrical power grid monitoring, and some inverse eigenvalue problems. It is well-known that the zero forcing number of a graph provides a lower bound on the minimum rank of a graph. In this paper we bound and characterize the zero forcing number of various circulant graphs, including families of bipartite circulants, as well as all cubic circulants. We extend the definition of the Möbius ladder to a type of torus product to obtain bounds on the minimum rank and the maximum nullity on these products. We obtain equality for torus products by employing orthogonal Hankel matrices. In fact, in every circulant graph for which we have determined these numbers, the maximum nullity equals the zero forcing number. It is an open question whether this holds for all circulant graphs.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"8 1","pages":"221 - 234"},"PeriodicalIF":0.8000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/spma-2020-0106","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2020-0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The zero forcing number of a graph has been applied to communication complexity, electrical power grid monitoring, and some inverse eigenvalue problems. It is well-known that the zero forcing number of a graph provides a lower bound on the minimum rank of a graph. In this paper we bound and characterize the zero forcing number of various circulant graphs, including families of bipartite circulants, as well as all cubic circulants. We extend the definition of the Möbius ladder to a type of torus product to obtain bounds on the minimum rank and the maximum nullity on these products. We obtain equality for torus products by employing orthogonal Hankel matrices. In fact, in every circulant graph for which we have determined these numbers, the maximum nullity equals the zero forcing number. It is an open question whether this holds for all circulant graphs.
期刊介绍:
Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.