Non-Abelian Euler top

IF 1.4 4区 数学 Q1 MATHEMATICS
Vladimir V. Sokolov
{"title":"Non-Abelian Euler top","authors":"Vladimir V. Sokolov","doi":"10.1070/RM9988","DOIUrl":null,"url":null,"abstract":"In [1], [2] a general approach to constructing integrable non-commutative generalizations of a given integrable system with polynomial right-hand side was proposed. We apply it to finding non-commutative analogues of the Euler top. Consider the system of ODEs u′ = z1 vw, v′ = z2 uw, w′ = z3 uv, zi ∈ C, zi ̸= 0, (1) where ′ means the derivative with respect to t. The system (1) possesses the first integrals I1 = z3u − z1w and I2 = z3v − x2w. For any i and j, the system uτ = z1 vwI 1I j 2 , vτ = z2 uwI i 1I j 2 , wτ = z3 uvI i 1I j 2 (2)","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"183 - 185"},"PeriodicalIF":1.4000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9988","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In [1], [2] a general approach to constructing integrable non-commutative generalizations of a given integrable system with polynomial right-hand side was proposed. We apply it to finding non-commutative analogues of the Euler top. Consider the system of ODEs u′ = z1 vw, v′ = z2 uw, w′ = z3 uv, zi ∈ C, zi ̸= 0, (1) where ′ means the derivative with respect to t. The system (1) possesses the first integrals I1 = z3u − z1w and I2 = z3v − x2w. For any i and j, the system uτ = z1 vwI 1I j 2 , vτ = z2 uwI i 1I j 2 , wτ = z3 uvI i 1I j 2 (2)
非阿贝尔欧拉顶
在[1],[2]中,提出了构造具有多项式右手边的给定可积系统的可积非交换推广的一般方法。我们将它应用于寻找欧拉顶的非交换类似物。考虑常微分方程组u′=z1-vw,v′=z2-uw,w′=z3-uv,zi∈C,zi̸=0,(1)其中′表示关于t的导数。系统(1)具有第一积分I1=z3u−z1w和I2=z3v−x2w。对于任何i和j,系统uτ=z1 vwI 1I j2,vτ=z2 uwI i 1I k2,wτ=z3 uvI i 1I j2(2)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信