Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles

IF 1.1 4区 物理与天体物理 Q4 NANOSCIENCE & NANOTECHNOLOGY
Xinyue Chen, Zhiwei Zhao, X. Jia, Yan-Hu Yu, Yong Fang, Mengru Zhu, Z. Weng, W. Lei, S. B. Shafe, M. N. Mohtar
{"title":"Localized surface plasmon enhanced carbon dots based solar-blind ultraviolet photodetectors by Al nanoparticles","authors":"Xinyue Chen, Zhiwei Zhao, X. Jia, Yan-Hu Yu, Yong Fang, Mengru Zhu, Z. Weng, W. Lei, S. B. Shafe, M. N. Mohtar","doi":"10.1117/1.JNP.17.026013","DOIUrl":null,"url":null,"abstract":"Abstract. Localized surface plasmon resonance (LSPR) can enhance the optical field density around the nanostructure to improve devices’ light absorption. Aluminum nanoparticles (Al NPs) were introduced into solar-blind photodetectors with carbon dots (CDs) as a photosensitive material. It is found that by inserting Al NPs into the device, the switching ratio, responsivity, and external quantum efficiency reached 125.9, 0.511 A/W, and 2.16, respectively, which has obvious improvement compared with CDs based photodetector. The results indicate that Al NPs have an apparent optimization effect on the performance of the CDs photodetector by stimulating LSPR, which improves the photoresponse ability of CDs. It is illustrated by finite difference time-domain method that Al NPs can constraint the light field energy and successfully stimulate LSPR.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"17 1","pages":"026013 - 026013"},"PeriodicalIF":1.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.026013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Localized surface plasmon resonance (LSPR) can enhance the optical field density around the nanostructure to improve devices’ light absorption. Aluminum nanoparticles (Al NPs) were introduced into solar-blind photodetectors with carbon dots (CDs) as a photosensitive material. It is found that by inserting Al NPs into the device, the switching ratio, responsivity, and external quantum efficiency reached 125.9, 0.511 A/W, and 2.16, respectively, which has obvious improvement compared with CDs based photodetector. The results indicate that Al NPs have an apparent optimization effect on the performance of the CDs photodetector by stimulating LSPR, which improves the photoresponse ability of CDs. It is illustrated by finite difference time-domain method that Al NPs can constraint the light field energy and successfully stimulate LSPR.
基于局域表面等离子体增强碳点的铝纳米粒子太阳盲紫外光电探测器
摘要局域表面等离子体共振(LSPR)可以提高纳米结构周围的光场密度,以提高器件的光吸收。将铝纳米颗粒(Al NPs)引入以碳点(CD)为光敏材料的日盲光电探测器中。研究发现,通过在器件中插入Al NPs,开关比、响应度和外量子效率分别达到125.9、0.511A/W和2.16,与基于CD的光电探测器相比有明显的提高。结果表明,Al NPs通过刺激LSPR对CDs光电探测器的性能有明显的优化作用,提高了CDs的光响应能力。时域有限差分法表明,Al NPs可以约束光场能量,成功地激发LSPR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanophotonics
Journal of Nanophotonics 工程技术-光学
CiteScore
2.60
自引率
6.70%
发文量
42
审稿时长
3 months
期刊介绍: The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信