{"title":"A Note on Minimum Degree, Bipartite Holes, and Hamiltonian Properties","authors":"Qiannan Zhou, H. Broersma, Ligong Wang, Yong Lu","doi":"10.7151/dmgt.2464","DOIUrl":null,"url":null,"abstract":"Abstract We adopt the recently introduced concept of the bipartite-hole-number due to McDiarmid and Yolov, and extend their result on Hamiltonicity to other Hamiltonian properties of graphs with a large minimum degree in terms of this concept. An (s, t)-bipartite-hole in a graph G consists of two disjoint sets of vertices S and T with |S| = s and |T| = t such that E(S, T ) =∅. The bipartite-hole-number α˜(G) \\tilde \\alpha \\left( G \\right) is the maximum integer r such that G contains an (s, t)-bipartite-hole for every pair of nonnegative integers s and t with s + t = r. Our main results are that a graph G is traceable if δ(G)≥α˜(G)−1 \\delta \\left( G \\right) \\ge \\tilde \\alpha \\left( G \\right) - 1 , and Hamilton-connected if δ(G)≥α˜(G)+1 \\delta \\left( G \\right) \\ge \\tilde \\alpha \\left( G \\right) + 1 , both improving the analogues of Dirac’s Theorem for traceable and Hamilton-connected graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We adopt the recently introduced concept of the bipartite-hole-number due to McDiarmid and Yolov, and extend their result on Hamiltonicity to other Hamiltonian properties of graphs with a large minimum degree in terms of this concept. An (s, t)-bipartite-hole in a graph G consists of two disjoint sets of vertices S and T with |S| = s and |T| = t such that E(S, T ) =∅. The bipartite-hole-number α˜(G) \tilde \alpha \left( G \right) is the maximum integer r such that G contains an (s, t)-bipartite-hole for every pair of nonnegative integers s and t with s + t = r. Our main results are that a graph G is traceable if δ(G)≥α˜(G)−1 \delta \left( G \right) \ge \tilde \alpha \left( G \right) - 1 , and Hamilton-connected if δ(G)≥α˜(G)+1 \delta \left( G \right) \ge \tilde \alpha \left( G \right) + 1 , both improving the analogues of Dirac’s Theorem for traceable and Hamilton-connected graphs.