Dynamics of low-degree rational inner skew-products on $\mathbb{T}^2$

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Sola, R. Tully-Doyle
{"title":"Dynamics of low-degree rational inner skew-products on $\\mathbb{T}^2$","authors":"A. Sola, R. Tully-Doyle","doi":"10.4064/ap211108-28-2","DOIUrl":null,"url":null,"abstract":"We examine iteration of certain skew-products on the bidisk whose components are rational inner functions, with emphasis on simple maps of the form Φ(z1, z2) = (φ(z1, z2), z2). If φ has degree 1 in the first variable, the dynamics on each horizontal fiber can be described in terms of Möbius transformations but the global dynamics on the 2-torus exhibit some complexity, encoded in terms of certain T-symmetric polynomials. We describe the dynamical behavior of such mappings Φ and give criteria for different configurations of fixed point curves and rotation belts in terms of zeros of a related one-variable polynomial.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap211108-28-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We examine iteration of certain skew-products on the bidisk whose components are rational inner functions, with emphasis on simple maps of the form Φ(z1, z2) = (φ(z1, z2), z2). If φ has degree 1 in the first variable, the dynamics on each horizontal fiber can be described in terms of Möbius transformations but the global dynamics on the 2-torus exhibit some complexity, encoded in terms of certain T-symmetric polynomials. We describe the dynamical behavior of such mappings Φ and give criteria for different configurations of fixed point curves and rotation belts in terms of zeros of a related one-variable polynomial.
$\mathbb{T}^2上的低次有理内斜积的动力学$
我们研究了某些斜积在bidisk上的迭代,其分量是有理内函数,重点是形式为Φ(z1,z2)=(φ(z1、z2),z2的简单映射。如果φ在第一个变量中的阶数为1,则每个水平纤维上的动力学可以用Möbius变换来描述,但2-环面上的全局动力学表现出一些复杂性,用某些T-对称多项式来编码。我们描述了这种映射Φ的动力学行为,并用相关的一元多项式的零点给出了不动点曲线和旋转带的不同配置的准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信