Analysis of Cauchy problem with fractal-fractional differential operators

IF 2 3区 数学 Q1 MATHEMATICS
N. Alharthi, A. Atangana, B. Alkahtani
{"title":"Analysis of Cauchy problem with fractal-fractional differential operators","authors":"N. Alharthi, A. Atangana, B. Alkahtani","doi":"10.1515/dema-2022-0181","DOIUrl":null,"url":null,"abstract":"Abstract Cauchy problems with fractal-fractional differential operators with a power law, exponential decay, and the generalized Mittag-Leffler kernels are considered in this work. We start with deriving some important inequalities, and then by using the linear growth and Lipchitz conditions, we derive the conditions under which these equations admit unique solutions. A numerical scheme was suggested for each case to derive a numerical solution to the equation. Some examples of fractal-fractional differential equations were presented, and their exact solutions were obtained and compared with the used numerical scheme. A nonlinear case was considered and solved, and numerical solutions were presented graphically for different values of fractional orders and fractal dimensions.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0181","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Cauchy problems with fractal-fractional differential operators with a power law, exponential decay, and the generalized Mittag-Leffler kernels are considered in this work. We start with deriving some important inequalities, and then by using the linear growth and Lipchitz conditions, we derive the conditions under which these equations admit unique solutions. A numerical scheme was suggested for each case to derive a numerical solution to the equation. Some examples of fractal-fractional differential equations were presented, and their exact solutions were obtained and compared with the used numerical scheme. A nonlinear case was considered and solved, and numerical solutions were presented graphically for different values of fractional orders and fractal dimensions.
用分形分数微分算子分析Cauchy问题
摘要本文考虑了幂律分形分数微分算子的Cauchy问题、指数衰减和广义Mittag-Lefler核。我们从导出一些重要的不等式开始,然后通过使用线性增长和Lipchitz条件,我们导出了这些方程允许唯一解的条件。对于每种情况,都提出了一个数值方案来推导方程的数值解。给出了分形分数阶微分方程的一些例子,得到了它们的精确解,并与所用的数值格式进行了比较。考虑并求解了一个非线性情况,给出了不同阶数和分形维数的数值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信