Monitoring and meaning of vibrations in robot polishing

IF 1.9 4区 物理与天体物理 Q3 OPTICS
M. Schneckenburger, Sven Hoefler, R. Boerret, R. Almeida, Ines Braga
{"title":"Monitoring and meaning of vibrations in robot polishing","authors":"M. Schneckenburger, Sven Hoefler, R. Boerret, R. Almeida, Ines Braga","doi":"10.1051/jeos/2023007","DOIUrl":null,"url":null,"abstract":"Robot polishing is increasingly used in the production of high-end glass work pieces such as astronomy mirrors, lithography lenses, laser gyroscopes or high-precision coordinate measuring machines. The quality of optical components such as lenses or mirrors can be described by shape errors and surface roughness. Whilst the trend towards sub nanometre level surfaces finishes and features progresses, matching both form and finish coherently in complex parts remains a major challenge. With larger or more precise optics, the influence of process instabilities on the quality of the optics to be polished has a greater impact. Vibrations at a polishing head have a negative influence on the polishing result. These vibrations are caused by bearing damage, motors and other excitations (e.g. gears, belts). The aim of this work is the determination of vibrations at a polishing head and their avoidance strategies. Different bearing conditions are considered: new and perfect bearing, a bearing that has been in contact with polish (rust) and a bearing with repeatable damage (groove milled on the running surface). It can be shown that the frequencies of bearings affect the polishing tool. Furthermore, reasons for and against vibrations in the process are discussed. For the case of vibrationless machining, avoidance strategies were presented.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2023007","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Robot polishing is increasingly used in the production of high-end glass work pieces such as astronomy mirrors, lithography lenses, laser gyroscopes or high-precision coordinate measuring machines. The quality of optical components such as lenses or mirrors can be described by shape errors and surface roughness. Whilst the trend towards sub nanometre level surfaces finishes and features progresses, matching both form and finish coherently in complex parts remains a major challenge. With larger or more precise optics, the influence of process instabilities on the quality of the optics to be polished has a greater impact. Vibrations at a polishing head have a negative influence on the polishing result. These vibrations are caused by bearing damage, motors and other excitations (e.g. gears, belts). The aim of this work is the determination of vibrations at a polishing head and their avoidance strategies. Different bearing conditions are considered: new and perfect bearing, a bearing that has been in contact with polish (rust) and a bearing with repeatable damage (groove milled on the running surface). It can be shown that the frequencies of bearings affect the polishing tool. Furthermore, reasons for and against vibrations in the process are discussed. For the case of vibrationless machining, avoidance strategies were presented.
机器人抛光振动的监测及其意义
机器人抛光越来越多地用于生产高端玻璃工件,如天文镜、光刻透镜、激光陀螺仪或高精度坐标测量机。透镜或反射镜等光学部件的质量可以通过形状误差和表面粗糙度来描述。虽然亚纳米级表面光洁度和特征的趋势正在发展,但在复杂零件中协调一致地匹配形状和光洁度仍然是一个重大挑战。对于更大或更精确的光学器件,工艺不稳定性对待抛光光学器件质量的影响更大。抛光头处的振动对抛光结果具有负面影响。这些振动是由轴承损坏、电机和其他激励(如齿轮、皮带)引起的。这项工作的目的是确定抛光头的振动及其避免策略。考虑了不同的轴承条件:新的和完美的轴承,接触过抛光(生锈)的轴承和具有可重复损坏的轴承(在运行表面上铣削凹槽)。可以看出,轴承的频率会影响抛光工具。此外,还讨论了在该过程中产生振动和反对振动的原因。对于无振动加工的情况,提出了避免策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信