{"title":"A Quasi-Optimal Spectral Solver for the Heat and Poisson Equations in a Closed Cylinder","authors":"David Darrow","doi":"10.1137/22s1502070","DOIUrl":null,"url":null,"abstract":"We develop a spectral method to solve the heat equation in a closed cylinder, achieving a quasi-optimal $\\mathcal{O}(N\\log N)$ complexity and high-order, spectral accuracy. The algorithm relies on a Chebyshev--Chebyshev--Fourier (CCF) discretization of the cylinder, which is easily implemented and decouples the heat equation into a collection of smaller, sparse Sylvester equations. In turn, each of these equations is solved using the alternating direction implicit (ADI) method in quasi-optimal time; overall, this represents an improvement in the heat equation solver from $\\mathcal{O}(N^{4/3})$ (in previous Chebyshev-based methods) to $\\mathcal{O}(N\\log N)$. While Legendre-based methods have recently been developed to achieve similar computation times, our Chebyshev discretization allows for far faster coefficient transforms; we demonstrate the application of this by outlining a spectral method to solve the incompressible Navier--Stokes equations in the cylinder in quasi-optimal time. Lastly, we provide numerical simulations of the heat equation, demonstrating significant speed-ups over traditional spectral collocation methods and finite difference methods.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22s1502070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a spectral method to solve the heat equation in a closed cylinder, achieving a quasi-optimal $\mathcal{O}(N\log N)$ complexity and high-order, spectral accuracy. The algorithm relies on a Chebyshev--Chebyshev--Fourier (CCF) discretization of the cylinder, which is easily implemented and decouples the heat equation into a collection of smaller, sparse Sylvester equations. In turn, each of these equations is solved using the alternating direction implicit (ADI) method in quasi-optimal time; overall, this represents an improvement in the heat equation solver from $\mathcal{O}(N^{4/3})$ (in previous Chebyshev-based methods) to $\mathcal{O}(N\log N)$. While Legendre-based methods have recently been developed to achieve similar computation times, our Chebyshev discretization allows for far faster coefficient transforms; we demonstrate the application of this by outlining a spectral method to solve the incompressible Navier--Stokes equations in the cylinder in quasi-optimal time. Lastly, we provide numerical simulations of the heat equation, demonstrating significant speed-ups over traditional spectral collocation methods and finite difference methods.