A Quasi-Optimal Spectral Solver for the Heat and Poisson Equations in a Closed Cylinder

David Darrow
{"title":"A Quasi-Optimal Spectral Solver for the Heat and Poisson Equations in a Closed Cylinder","authors":"David Darrow","doi":"10.1137/22s1502070","DOIUrl":null,"url":null,"abstract":"We develop a spectral method to solve the heat equation in a closed cylinder, achieving a quasi-optimal $\\mathcal{O}(N\\log N)$ complexity and high-order, spectral accuracy. The algorithm relies on a Chebyshev--Chebyshev--Fourier (CCF) discretization of the cylinder, which is easily implemented and decouples the heat equation into a collection of smaller, sparse Sylvester equations. In turn, each of these equations is solved using the alternating direction implicit (ADI) method in quasi-optimal time; overall, this represents an improvement in the heat equation solver from $\\mathcal{O}(N^{4/3})$ (in previous Chebyshev-based methods) to $\\mathcal{O}(N\\log N)$. While Legendre-based methods have recently been developed to achieve similar computation times, our Chebyshev discretization allows for far faster coefficient transforms; we demonstrate the application of this by outlining a spectral method to solve the incompressible Navier--Stokes equations in the cylinder in quasi-optimal time. Lastly, we provide numerical simulations of the heat equation, demonstrating significant speed-ups over traditional spectral collocation methods and finite difference methods.","PeriodicalId":93373,"journal":{"name":"SIAM undergraduate research online","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM undergraduate research online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22s1502070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a spectral method to solve the heat equation in a closed cylinder, achieving a quasi-optimal $\mathcal{O}(N\log N)$ complexity and high-order, spectral accuracy. The algorithm relies on a Chebyshev--Chebyshev--Fourier (CCF) discretization of the cylinder, which is easily implemented and decouples the heat equation into a collection of smaller, sparse Sylvester equations. In turn, each of these equations is solved using the alternating direction implicit (ADI) method in quasi-optimal time; overall, this represents an improvement in the heat equation solver from $\mathcal{O}(N^{4/3})$ (in previous Chebyshev-based methods) to $\mathcal{O}(N\log N)$. While Legendre-based methods have recently been developed to achieve similar computation times, our Chebyshev discretization allows for far faster coefficient transforms; we demonstrate the application of this by outlining a spectral method to solve the incompressible Navier--Stokes equations in the cylinder in quasi-optimal time. Lastly, we provide numerical simulations of the heat equation, demonstrating significant speed-ups over traditional spectral collocation methods and finite difference methods.
封闭圆柱中热和泊松方程的拟最优谱解算器
我们开发了一种求解封闭圆柱体中热方程的谱方法,实现了准最优的$\mathcal{O}(N\logN)$复杂度和高阶谱精度。该算法依赖于圆柱体的Chebyshev-Chebyshev傅立叶(CCF)离散化,该离散化易于实现,并将热方程解耦为一组更小、稀疏的Sylvester方程。反过来,使用交替方向隐式(ADI)方法在准最优时间内求解这些方程中的每一个;总的来说,这代表了热方程求解器从$\mathcal{O}(N^{4/3})$(在以前基于切比雪夫的方法中)到$\mathical{O}(N\log N)$的改进。虽然最近开发了基于勒让德的方法来实现类似的计算时间,但我们的切比雪夫离散化允许更快的系数变换;我们通过概述一种在拟最优时间内求解圆柱体中不可压缩Navier-Stokes方程的谱方法来证明这一点的应用。最后,我们对热方程进行了数值模拟,表明与传统的谱配置方法和有限差分方法相比,速度显著加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信