$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

Q4 Mathematics
A. Huseynli, Asmar Mirzabalayeva
{"title":"$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework","authors":"A. Huseynli, Asmar Mirzabalayeva","doi":"10.22130/SCMA.2018.81285.391","DOIUrl":null,"url":null,"abstract":"In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is bounded in $L_{p;r} $. The problem of basisness of the system  $left{Aleft(tright)e^{{mathop{rm int}} }; Bleft(tright)e^{-{mathop{rm int}} } right}_{nin Z_{+} }, $  is also considered. It is shown that under an additional condition this system forms a basis in $L_{p;r} $  if and only if the Riemann-Hilbert problem has a unique solution in corresponding Hardy class ${  H}_{p;r}^{+} times {  H}_{p;r}^{+} $.","PeriodicalId":38924,"journal":{"name":"Communications in Mathematical Analysis","volume":"16 1","pages":"83-91"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2018.81285.391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is bounded in $L_{p;r} $. The problem of basisness of the system  $left{Aleft(tright)e^{{mathop{rm int}} }; Bleft(tright)e^{-{mathop{rm int}} } right}_{nin Z_{+} }, $  is also considered. It is shown that under an additional condition this system forms a basis in $L_{p;r} $  if and only if the Riemann-Hilbert problem has a unique solution in corresponding Hardy class ${  H}_{p;r}^{+} times {  H}_{p;r}^{+} $.
$L_{p;r}$空间:该框架下的Cauchy奇异积分、Hardy类和Riemann-Hilbert问题
本文引入了连续嵌入到$L_{p}$中的空间$L_{p;r}$。定义了相应的解析函数的Hardy空间。研究了这些空间中函数的一些性质。对新空间证明了经典Hardy空间理论中某些结果的相似性。证明了Cauchy奇异积分算子在$L_{p;r}$中是有界的。系统$left的基性问题{Aleft(tright)e^{{mathop{rm-int}};Bleft(tright)e^{-{mathop{rm-int}}}右}_{ninZ_{+}},$也被考虑。证明了在一个附加条件下,该系统在$L_{p;r}$中形成基当且仅当Riemann-Hilbert问题在相应的Hardy类${H}_{p;r}^{+}次{H}-{p;r-}^{+}$中具有唯一解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematical Analysis
Communications in Mathematical Analysis Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信