An Investigation on the Effects of Adding Nano-Sio2 Particles and Silica Fume with Different Specific Surface Areas on the Physical and Mechanical Parameters of Soil-Cement Materials
{"title":"An Investigation on the Effects of Adding Nano-Sio2 Particles and Silica Fume with Different Specific Surface Areas on the Physical and Mechanical Parameters of Soil-Cement Materials","authors":"M. Tajdini, M. Bargi, Omid Rasouli Ghahroudi","doi":"10.22059/CEIJ.2021.291231.1619","DOIUrl":null,"url":null,"abstract":"Soil cement is a mixture of Portland cement, soil and water, in which hydration of cement and compaction causes the materials’ constituents to bond together makes a dense and durable composition with low permeability and abrasion resistant. Since most of the recent researches are focused on the addition of nano-SiO2 on concrete, in this paper it has been attempted to use nano-SiO2 particles in soil-cement and observe the effects. Due to the fact that in concrete there are no particles passing sieve 200 and this restriction does not apply to soil-cements, some tests were carried out on the nano-SiO2 + soil-cement matrix because of the meaningful difference between concrete and soil-cement. The test procedure consists of moisture-dry density, unconfined compressive test and hydraulic conductivity. In these tests, silica fume (with specific surface area of 21 m2/g), nano-SiO2 (with specific surface area of 200 and 380 m2/g) were added to soil-cement. The results show that adding certain amounts of nano-SiO2 particles to the soil-cement matrix can improve the compressive strength and reduce permeability and speed hydration reactions in the matrix in presence of nano-SiO2 particles.","PeriodicalId":43959,"journal":{"name":"Civil Engineering Infrastructures Journal-CEIJ","volume":"54 1","pages":"93-109"},"PeriodicalIF":1.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Infrastructures Journal-CEIJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/CEIJ.2021.291231.1619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Soil cement is a mixture of Portland cement, soil and water, in which hydration of cement and compaction causes the materials’ constituents to bond together makes a dense and durable composition with low permeability and abrasion resistant. Since most of the recent researches are focused on the addition of nano-SiO2 on concrete, in this paper it has been attempted to use nano-SiO2 particles in soil-cement and observe the effects. Due to the fact that in concrete there are no particles passing sieve 200 and this restriction does not apply to soil-cements, some tests were carried out on the nano-SiO2 + soil-cement matrix because of the meaningful difference between concrete and soil-cement. The test procedure consists of moisture-dry density, unconfined compressive test and hydraulic conductivity. In these tests, silica fume (with specific surface area of 21 m2/g), nano-SiO2 (with specific surface area of 200 and 380 m2/g) were added to soil-cement. The results show that adding certain amounts of nano-SiO2 particles to the soil-cement matrix can improve the compressive strength and reduce permeability and speed hydration reactions in the matrix in presence of nano-SiO2 particles.