Frictional Contact Problem With Wear for Thermo-Viscoelastic Materials With Damage

IF 0.7 Q2 MATHEMATICS
Safa Gherian, Abdelaziz Azeb Ahmed, F. Yazid, F.S. Djeradi
{"title":"Frictional Contact Problem With Wear for Thermo-Viscoelastic Materials With Damage","authors":"Safa Gherian, Abdelaziz Azeb Ahmed, F. Yazid, F.S. Djeradi","doi":"10.28924/2291-8639-21-2023-56","DOIUrl":null,"url":null,"abstract":"We consider a mathematical model which describes a dynamic frictional contact problem for thermo-viscoelastic materials with long memory and damage. The contact is modeled by the normal compliance condition and wear between surfaces are taken into account. We establish a variational formulation for the model and prove the existence and uniqueness of the weak solution. The proof is based on arguments of hyperbolic nonlinear differential equations, parabolic variational inequalities and Banach fixed point.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a mathematical model which describes a dynamic frictional contact problem for thermo-viscoelastic materials with long memory and damage. The contact is modeled by the normal compliance condition and wear between surfaces are taken into account. We establish a variational formulation for the model and prove the existence and uniqueness of the weak solution. The proof is based on arguments of hyperbolic nonlinear differential equations, parabolic variational inequalities and Banach fixed point.
具有损伤的热粘弹性材料的磨损摩擦接触问题
我们考虑了一个描述具有长记忆和损伤的热粘弹性材料动态摩擦接触问题的数学模型。接触由正常顺应性条件建模,并考虑表面之间的磨损。我们建立了模型的变分公式,并证明了弱解的存在性和唯一性。该证明基于双曲型非线性微分方程、抛物型变分不等式和Banach不动点的论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信