The Prelimit Generator Comparison Approach of Stein’s Method

Q1 Mathematics
Anton Braverman
{"title":"The Prelimit Generator Comparison Approach of Stein’s Method","authors":"Anton Braverman","doi":"10.1287/stsy.2021.0085","DOIUrl":null,"url":null,"abstract":"This paper uses the generator comparison approach of Stein’s method to analyze the gap between steady-state distributions of Markov chains and diffusion processes. The “standard” generator comparison approach starts with the Poisson equation for the diffusion, and the main technical difficulty is to obtain bounds on the derivatives of the solution to the Poisson equation, also known as Stein factor bounds. In this paper we propose starting with the Poisson equation of the Markov chain; we term this the prelimit approach. Although one still needs Stein factor bounds, they now correspond to finite differences of the Markov chain Poisson equation solution rather than the derivatives of the solution to the diffusion Poisson equation. In certain cases, the former are easier to obtain. We use the [Formula: see text] model as a simple working example to illustrate our approach.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2021.0085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

Abstract

This paper uses the generator comparison approach of Stein’s method to analyze the gap between steady-state distributions of Markov chains and diffusion processes. The “standard” generator comparison approach starts with the Poisson equation for the diffusion, and the main technical difficulty is to obtain bounds on the derivatives of the solution to the Poisson equation, also known as Stein factor bounds. In this paper we propose starting with the Poisson equation of the Markov chain; we term this the prelimit approach. Although one still needs Stein factor bounds, they now correspond to finite differences of the Markov chain Poisson equation solution rather than the derivatives of the solution to the diffusion Poisson equation. In certain cases, the former are easier to obtain. We use the [Formula: see text] model as a simple working example to illustrate our approach.
Stein方法的前置生成器比较法
本文采用Stein方法中的生成器比较方法来分析马尔可夫链稳态分布与扩散过程之间的差距。“标准”生成器比较方法从扩散的泊松方程开始,主要的技术难点是获得泊松方程解的导数的边界,也称为斯坦因因子边界。本文从马尔可夫链的泊松方程出发,提出了一种新的马尔可夫链模型;我们称之为预许可方法。尽管仍然需要Stein因子界,但它们现在对应于马尔可夫链泊松方程解的有限差,而不是扩散泊松方程的解的导数。在某些情况下,前者更容易获得。我们使用[Formula:see-text]模型作为一个简单的工作示例来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信