{"title":"Algebraic independence of the partial derivatives of certain functions with arbitrary number of variables","authors":"Haruki Ide, Taka-aki Tanaka","doi":"10.1016/j.indag.2023.07.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>We construct a complex entire function with arbitrary number of variables which has the following property: The infinite set consisting of all the values of all its partial derivatives of any orders at all algebraic points, including zero components, is algebraically independent. In Section 2 of this paper, we develop a technique involving linear isomorphisms<span> and infinite products to replace the algebraic independence of the values of functions in question with that of functions easier to deal with. In Sections 2 and 3, using the technique together with Mahler’s method, we can reduce the algebraic independence of the infinite set mentioned above to the linear independence of certain rational functions </span></span>modulo the rational function field of many variables. The latter one is solved by the discussions involving a certain valuation and a generic point in Sections 3 and 4.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We construct a complex entire function with arbitrary number of variables which has the following property: The infinite set consisting of all the values of all its partial derivatives of any orders at all algebraic points, including zero components, is algebraically independent. In Section 2 of this paper, we develop a technique involving linear isomorphisms and infinite products to replace the algebraic independence of the values of functions in question with that of functions easier to deal with. In Sections 2 and 3, using the technique together with Mahler’s method, we can reduce the algebraic independence of the infinite set mentioned above to the linear independence of certain rational functions modulo the rational function field of many variables. The latter one is solved by the discussions involving a certain valuation and a generic point in Sections 3 and 4.