Algebraic independence of the partial derivatives of certain functions with arbitrary number of variables

Pub Date : 2023-07-28 DOI:10.1016/j.indag.2023.07.003
Haruki Ide, Taka-aki Tanaka
{"title":"Algebraic independence of the partial derivatives of certain functions with arbitrary number of variables","authors":"Haruki Ide,&nbsp;Taka-aki Tanaka","doi":"10.1016/j.indag.2023.07.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>We construct a complex entire function with arbitrary number of variables which has the following property: The infinite set consisting of all the values of all its partial derivatives of any orders at all algebraic points, including zero components, is algebraically independent. In Section 2 of this paper, we develop a technique involving linear isomorphisms<span> and infinite products to replace the algebraic independence of the values of functions in question with that of functions easier to deal with. In Sections 2 and 3, using the technique together with Mahler’s method, we can reduce the algebraic independence of the infinite set mentioned above to the linear independence of certain rational functions </span></span>modulo the rational function field of many variables. The latter one is solved by the discussions involving a certain valuation and a generic point in Sections 3 and 4.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a complex entire function with arbitrary number of variables which has the following property: The infinite set consisting of all the values of all its partial derivatives of any orders at all algebraic points, including zero components, is algebraically independent. In Section 2 of this paper, we develop a technique involving linear isomorphisms and infinite products to replace the algebraic independence of the values of functions in question with that of functions easier to deal with. In Sections 2 and 3, using the technique together with Mahler’s method, we can reduce the algebraic independence of the infinite set mentioned above to the linear independence of certain rational functions modulo the rational function field of many variables. The latter one is solved by the discussions involving a certain valuation and a generic point in Sections 3 and 4.

分享
查看原文
任意变量函数偏导数的代数独立性
我们构造了一个具有任意变量数的复整函数,该函数具有以下性质:它的所有阶偏导数在所有代数点的所有值组成的无限集,包括零分量,是代数无关的。在本文的第2节中,我们发展了一种涉及线性同构和无穷积的技术,用更容易处理的函数的代数独立性来代替所讨论的函数值的代数独立性。在第2节和第3节中,利用该技术和Mahler的方法,我们可以将上述无限集的代数无关化约为若干有理函数模多变量有理函数域的线性无关。后一个问题是通过在第3节和第4节中涉及某个估值和一般点的讨论来解决的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信