Paula Bugajska, U. Filipkowska, T. Jóźwiak, M. Kuczajowska-Zadrożna
{"title":"THE INFLUENCE OF CHITOSAN FLAKE DEACETYLATION DEGREE ON ORTHOPHOSPHATE SORPTION EFFICIENCY FROM AQUEOUS SOLUTIONS","authors":"Paula Bugajska, U. Filipkowska, T. Jóźwiak, M. Kuczajowska-Zadrożna","doi":"10.15259/PCACD.23.003","DOIUrl":null,"url":null,"abstract":"The article presents the effectiveness of orthophosphate sorption from aqueous solutions depending on the deacetylation degree of chitosan flakes.\nThe first stage of the research was to determine the pH value at which the sorption process was the most effective (from the pH range 2–11). In the second stage, research was carried out to determine the maximum sorption capacities of chitosan with deacetylation degrees of 75%, 85% and 90% in relation to PO43-. The highest effectiveness of orthophosphate removal on chitosan, regardless of its deacetylation degree, was obtained at pH 4. At pH 2 and 3, the chitosan flakes dissolved. This study showed that the sorption effectiveness of phosphorus compounds depends on the deacetylation degree of chitosan. Along with the increase in deacetylation degree, the sorption capacity of chitosan also increases in relation to orthophosphates. It is related to the higher number of amino groups in the structure of chitosan, which are responsible for the sorption of pollutants in the form of anions. The maximum sorption capacity of chitosan-DD = 75% in relation to biogen was 5.13 mg/g, chitosan-DD = 85% was 5.65 mg/g, and chitosan-DD = 90% was 5.91 mg/g.\nAfter 60 minutes, the desorption process had begun and was most likely caused by an increase in the pH of the solution. Due to chitosan's ability to neutralise the sample and the associated risk of desorption, the time of sorbent contact with sewage cannot be longer than 60 minutes.","PeriodicalId":44461,"journal":{"name":"Progress on Chemistry and Application of Chitin and its Derivatives","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress on Chemistry and Application of Chitin and its Derivatives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15259/PCACD.23.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
The article presents the effectiveness of orthophosphate sorption from aqueous solutions depending on the deacetylation degree of chitosan flakes.
The first stage of the research was to determine the pH value at which the sorption process was the most effective (from the pH range 2–11). In the second stage, research was carried out to determine the maximum sorption capacities of chitosan with deacetylation degrees of 75%, 85% and 90% in relation to PO43-. The highest effectiveness of orthophosphate removal on chitosan, regardless of its deacetylation degree, was obtained at pH 4. At pH 2 and 3, the chitosan flakes dissolved. This study showed that the sorption effectiveness of phosphorus compounds depends on the deacetylation degree of chitosan. Along with the increase in deacetylation degree, the sorption capacity of chitosan also increases in relation to orthophosphates. It is related to the higher number of amino groups in the structure of chitosan, which are responsible for the sorption of pollutants in the form of anions. The maximum sorption capacity of chitosan-DD = 75% in relation to biogen was 5.13 mg/g, chitosan-DD = 85% was 5.65 mg/g, and chitosan-DD = 90% was 5.91 mg/g.
After 60 minutes, the desorption process had begun and was most likely caused by an increase in the pH of the solution. Due to chitosan's ability to neutralise the sample and the associated risk of desorption, the time of sorbent contact with sewage cannot be longer than 60 minutes.
期刊介绍:
Progress in the Chemistry and Application of Chitin and its Derivatives is an annual journal focused on all aspects of production, modification, enzymology and application of chitin and its many derivatives, including chitosan. The journal publishes full-length papers as well as invited reviews. To be considered, papers must present original research that has not been published or accepted for publication elsewhere. The language of the journal will be English.