Computable error bounds for asymptotic approximations of the quadratic discriminant function

IF 0.5 4区 数学 Q3 MATHEMATICS
Y. Fujikoshi
{"title":"Computable error bounds for asymptotic approximations of the quadratic discriminant function","authors":"Y. Fujikoshi","doi":"10.32917/hmj/1607396491","DOIUrl":null,"url":null,"abstract":"A bstract . This paper is concerned with computable error bounds for asymptotic approximations of the expected probabilities of misclassification (EPMC) of the quadratic discriminant function Q . A location and scale mixture expression for Q is given as a special case of a general discriminant function including the linear and quadratic discriminant functions. Using the result, we provide computable error bounds for asymptotic approximations of the EPMC of Q when both the sample size and the dimensionality are large. The bounds are numerically explored. Similar results are given for a quadratic discriminant function Q 0 when the covariance matrix is known.","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/hmj/1607396491","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

A bstract . This paper is concerned with computable error bounds for asymptotic approximations of the expected probabilities of misclassification (EPMC) of the quadratic discriminant function Q . A location and scale mixture expression for Q is given as a special case of a general discriminant function including the linear and quadratic discriminant functions. Using the result, we provide computable error bounds for asymptotic approximations of the EPMC of Q when both the sample size and the dimensionality are large. The bounds are numerically explored. Similar results are given for a quadratic discriminant function Q 0 when the covariance matrix is known.
二次判别函数渐近逼近的可计算误差界
摘要。本文研究了二次判别函数Q的期望误分类概率(EPMC)的渐近近似的可计算误差界。作为包括线性和二次判别函数的一般判别函数的特例,给出了Q的位置和尺度混合表达式。利用该结果,当样本量和维数都很大时,我们为Q的EPMC的渐近近似提供了可计算的误差界。对边界进行了数值探索。当协方差矩阵已知时,对于二次判别函数Q 0给出了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信