J. A. Patel, Aundrea M. Lee, D. V. Franklin, F. Fronczek, T. Junk
{"title":"Cyclization Reactions Involving 2-Aminoarenetellurols and Derivatives of α,β-Unsaturated Carboxylic Acids","authors":"J. A. Patel, Aundrea M. Lee, D. V. Franklin, F. Fronczek, T. Junk","doi":"10.1155/2021/7140222","DOIUrl":null,"url":null,"abstract":"The reductive cyclization of arenetellurols carrying α,β-unsaturated amide functionalities in the ortho position was investigated. Conceptually, such compounds can form 1,3-tellurazoles without the involvement of the unsaturation in the ring closure, they can form 1,4-tellurazinone derivatives, or they can undergo ring closure to 1,5-tellurazepinones. Amides derived from acrylic and methacrylic acid generated 1,5-tellurazepinones while 2-cinnamylamidobenzenetellurol cyclized to a 1,3-tellurazole derivative. In contrast, the reaction of acetylenedicarboxylic acid and its derivatives with 2-aminoarenetellurols generated 1,4-tellurazepinones, including a derivative of novel tricyclic naphtho [1, 4]tellurazinone. A comparison with analogous reactions of sulfur congeners indicates that their chemistry is a good predictor for the products obtained from 2-aminoarenetellurols. Selected compounds were characterized by X-ray crystallography. The present work offers access to previously unexplored organotellurium heterocycles.","PeriodicalId":12816,"journal":{"name":"Heteroatom Chemistry","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heteroatom Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2021/7140222","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The reductive cyclization of arenetellurols carrying α,β-unsaturated amide functionalities in the ortho position was investigated. Conceptually, such compounds can form 1,3-tellurazoles without the involvement of the unsaturation in the ring closure, they can form 1,4-tellurazinone derivatives, or they can undergo ring closure to 1,5-tellurazepinones. Amides derived from acrylic and methacrylic acid generated 1,5-tellurazepinones while 2-cinnamylamidobenzenetellurol cyclized to a 1,3-tellurazole derivative. In contrast, the reaction of acetylenedicarboxylic acid and its derivatives with 2-aminoarenetellurols generated 1,4-tellurazepinones, including a derivative of novel tricyclic naphtho [1, 4]tellurazinone. A comparison with analogous reactions of sulfur congeners indicates that their chemistry is a good predictor for the products obtained from 2-aminoarenetellurols. Selected compounds were characterized by X-ray crystallography. The present work offers access to previously unexplored organotellurium heterocycles.
期刊介绍:
Heteroatom Chemistry brings together a broad, interdisciplinary group of chemists who work with compounds containing main-group elements of groups 13 through 17 of the Periodic Table, and certain other related elements. The fundamental reactivity under investigation should, in all cases, be concentrated about the heteroatoms. It does not matter whether the compounds being studied are acyclic or cyclic; saturated or unsaturated; monomeric, polymeric or solid state in nature; inorganic, organic, or naturally occurring, so long as the heteroatom is playing an essential role. Computational, experimental, and combined studies are equally welcome.
Subject areas include (but are by no means limited to):
-Reactivity about heteroatoms for accessing new products or synthetic pathways
-Unusual valency main-group element compounds and their properties
-Highly strained (e.g. bridged) main-group element compounds and their properties
-Photochemical or thermal cleavage of heteroatom bonds and the resulting reactivity
-Uncommon and structurally interesting heteroatom-containing species (including those containing multiple bonds and catenation)
-Stereochemistry of compounds due to the presence of heteroatoms
-Neighboring group effects of heteroatoms on the properties of compounds
-Main-group element compounds as analogues of transition metal compounds
-Variations and new results from established and named reactions (including Wittig, Kabachnik–Fields, Pudovik, Arbuzov, Hirao, and Mitsunobu)
-Catalysis and green syntheses enabled by heteroatoms and their chemistry
-Applications of compounds where the heteroatom plays a critical role.
In addition to original research articles on heteroatom chemistry, the journal welcomes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.