Solution of Singularly Perturbed Boundary Value Problems with Singularity Using Variable Mesh Finite Difference Method

IF 0.4 Q4 MATHEMATICS
E. Siva Prasad, K. Phaneendra
{"title":"Solution of Singularly Perturbed Boundary Value Problems with Singularity Using Variable Mesh Finite Difference Method","authors":"E. Siva Prasad, K. Phaneendra","doi":"10.1080/1726037X.2021.1966945","DOIUrl":null,"url":null,"abstract":"Abstract We use non-polynomial spline with variable mesh to establish a numerical scheme for the solution of boundary value problem with singularity. The discrete equation of the problem is developed based on the condition of the class C 1 of non-polynomial spline at the inner nodes and it is not valid for singularity. At singularity t = 0, the problem is modified in order to have a three term relationship. The method’s tridiagonal scheme is analyzed using the well-known discrete imbedding invariant algorithm. We discuss the error analysis of the scheme and two examples with layer at one end of the boundary are consider to demonstrate the practical utility of the scheme. Maximum absolute errors are present in tabular form to show the efficiency of the proposed method.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"19 1","pages":"113 - 124"},"PeriodicalIF":0.4000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2021.1966945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We use non-polynomial spline with variable mesh to establish a numerical scheme for the solution of boundary value problem with singularity. The discrete equation of the problem is developed based on the condition of the class C 1 of non-polynomial spline at the inner nodes and it is not valid for singularity. At singularity t = 0, the problem is modified in order to have a three term relationship. The method’s tridiagonal scheme is analyzed using the well-known discrete imbedding invariant algorithm. We discuss the error analysis of the scheme and two examples with layer at one end of the boundary are consider to demonstrate the practical utility of the scheme. Maximum absolute errors are present in tabular form to show the efficiency of the proposed method.
用变网格有限差分法求解奇异摄动边值问题
摘要利用变网格的非多项式样条函数建立了求解奇异边值问题的数值格式。该问题的离散方程是基于C1类非多项式样条在内部节点的条件建立的,它对奇异性是无效的。在奇异性t=0时,为了具有三项关系,对问题进行了修改。利用著名的离散嵌入不变量算法分析了该方法的三对角格式。我们讨论了该方案的误差分析,并考虑了边界一端有层的两个例子来证明该方案的实用性。最大绝对误差以表格形式呈现,以显示所提出方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信