Measuring Data Loss Resulting from Interference

IF 1.5 Q3 ASTRONOMY & ASTROPHYSICS
W. Baan, A. Jessner, Jaap Steenge
{"title":"Measuring Data Loss Resulting from Interference","authors":"W. Baan, A. Jessner, Jaap Steenge","doi":"10.1142/S2251171719400075","DOIUrl":null,"url":null,"abstract":"This paper presents an observing methodology for calibrated measurements of radio interference levels and compares these with threshold interference limits that have been established for interference entering the bands allocated to the Radio Astronomy Service. The measurement time and bandwidth intervals for these observations may be commensurate with the time and frequency variability characteristic of the interfering signals and the threshold levels may be appropriately scaled from the values presented in ITU-R RA.769 using a 2000[Formula: see text]s reference time interval. The data loss for astronomical instruments may be measured as a percentage of occupancy in the time–frequency domain both for short and long measurement intervals. The observed time–frequency occupancy characteristics for non-geostationary satellite systems and earth stations in the mobile–satellite service may be incorporated into an effective power flux density simulation to obtain the effective data loss and sky blockage due to these services.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171719400075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171719400075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an observing methodology for calibrated measurements of radio interference levels and compares these with threshold interference limits that have been established for interference entering the bands allocated to the Radio Astronomy Service. The measurement time and bandwidth intervals for these observations may be commensurate with the time and frequency variability characteristic of the interfering signals and the threshold levels may be appropriately scaled from the values presented in ITU-R RA.769 using a 2000[Formula: see text]s reference time interval. The data loss for astronomical instruments may be measured as a percentage of occupancy in the time–frequency domain both for short and long measurement intervals. The observed time–frequency occupancy characteristics for non-geostationary satellite systems and earth stations in the mobile–satellite service may be incorporated into an effective power flux density simulation to obtain the effective data loss and sky blockage due to these services.
测量干扰造成的数据丢失
本文介绍了一种用于校准无线电干扰水平测量的观测方法,并将其与为进入分配给无线电天文服务的波段的干扰而制定的阈值干扰限值进行了比较。这些观测的测量时间和带宽间隔可以与干扰信号的时间和频率变化特性相称,并且可以使用2000年的参考时间间隔从ITU-R RA.769中给出的值适当地缩放阈值水平。天文仪器的数据损失可以在短测量间隔和长测量间隔的时频域中以占用率的百分比来测量。在移动卫星服务中,观测到的非地球静止卫星系统和地球站的时频占用特性可以纳入有效的功率通量密度模拟,以获得由于这些服务造成的有效数据丢失和天空堵塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Astronomical Instrumentation
Journal of Astronomical Instrumentation ASTRONOMY & ASTROPHYSICS-
CiteScore
2.30
自引率
7.70%
发文量
19
期刊介绍: The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信