On Lusternik–Schnirelmann category and topological complexity of non-k-equal manifolds

Pub Date : 2022-04-25 DOI:10.1007/s40062-022-00304-z
Jesús González, José Luis León-Medina
{"title":"On Lusternik–Schnirelmann category and topological complexity of non-k-equal manifolds","authors":"Jesús González,&nbsp;José Luis León-Medina","doi":"10.1007/s40062-022-00304-z","DOIUrl":null,"url":null,"abstract":"<div><p>We compute the Lusternik–Schnirelmann category and all the higher topological complexities of non-<i>k</i>-equal manifolds <span>\\(M_d^{(k)}(n)\\)</span> for certain values of <i>d</i>, <i>k</i> and <i>n</i>. This includes instances where <span>\\(M_d^{(k)}(n)\\)</span> is known to be rationally non-formal. The key ingredient in our computations is the knowledge of the cohomology ring <span>\\(H^*(M_d^{(k)}(n))\\)</span> as described by Dobrinskaya and Turchin. A fine tuning comes from the use of obstruction theory techniques.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00304-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We compute the Lusternik–Schnirelmann category and all the higher topological complexities of non-k-equal manifolds \(M_d^{(k)}(n)\) for certain values of d, k and n. This includes instances where \(M_d^{(k)}(n)\) is known to be rationally non-formal. The key ingredient in our computations is the knowledge of the cohomology ring \(H^*(M_d^{(k)}(n))\) as described by Dobrinskaya and Turchin. A fine tuning comes from the use of obstruction theory techniques.

分享
查看原文
非k相等流形的Lusternik-Schnirelmann范畴和拓扑复杂度
对于d, k和n的某些值,我们计算Lusternik-Schnirelmann类别和所有非k相等流形\(M_d^{(k)}(n)\)的更高拓扑复杂性。这包括已知\(M_d^{(k)}(n)\)是合理非形式化的实例。我们计算的关键因素是多布林斯基亚和图尔钦所描述的上同环\(H^*(M_d^{(k)}(n))\)的知识。一个精细的调整来自于阻碍理论技术的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信