Advanced wind turbine control development using field test analysis for generator overspeed mitigation

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Mandar Phadnis, D. Zalkind, Lucy Pao
{"title":"Advanced wind turbine control development using field test analysis for generator overspeed mitigation","authors":"Mandar Phadnis, D. Zalkind, Lucy Pao","doi":"10.1002/we.2860","DOIUrl":null,"url":null,"abstract":"Turbulent and gusty wind conditions can cause generator overspeed peaks to exceed a threshold that then lead to wind turbine shutdowns, which then decrease the energy production of the wind turbines. We derive so‐called “gust measures” that predict when generator overspeed peaks may occur. These gust measures are then used to develop advanced controllers to mitigate generator overspeed peaks so that wind turbines can operate more robustly in difficult wind conditions without exceeding generator overspeed thresholds that would lead to turbine shutdown events. The advanced controllers are demonstrated in nonlinear aeroelastic simulations using the open‐source wind turbine simulation tool OpenFAST. To increase the realism of the simulations, they are run using field‐replicated wind conditions and a wind turbine model based on data from an experimental field campaign on a downscaled demonstrator of a novel extreme‐scale, two‐bladed, downwind rotor design.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2860","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Turbulent and gusty wind conditions can cause generator overspeed peaks to exceed a threshold that then lead to wind turbine shutdowns, which then decrease the energy production of the wind turbines. We derive so‐called “gust measures” that predict when generator overspeed peaks may occur. These gust measures are then used to develop advanced controllers to mitigate generator overspeed peaks so that wind turbines can operate more robustly in difficult wind conditions without exceeding generator overspeed thresholds that would lead to turbine shutdown events. The advanced controllers are demonstrated in nonlinear aeroelastic simulations using the open‐source wind turbine simulation tool OpenFAST. To increase the realism of the simulations, they are run using field‐replicated wind conditions and a wind turbine model based on data from an experimental field campaign on a downscaled demonstrator of a novel extreme‐scale, two‐bladed, downwind rotor design.
利用现场测试分析开发用于发电机超速缓解的先进风力涡轮机控制
湍流和阵风条件会导致发电机超速峰值超过阈值,然后导致风力涡轮机停机,从而降低风力涡轮机的能量生产。我们推导出了所谓的“阵风测量”,可以预测发电机何时可能出现超速峰值。然后,这些阵风措施被用于开发先进的控制器,以减轻发电机超速峰值,从而使风力涡轮机能够在困难的风力条件下更稳健地运行,而不会超过会导致涡轮机停机事件的发电机超速阈值。使用开源风力涡轮机模拟工具OpenFAST在非线性气动弹性模拟中演示了高级控制器。为了提高模拟的真实性,他们使用现场复制的风况和基于实验现场活动数据的风力涡轮机模型,在一个新型极端规模、双叶片、顺风转子设计的缩小演示器上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信